Sequential Principal Curves Analysis

This work includes all the technical details of the Sequential Principal Curves Analysis (SPCA) in a single document. SPCA is an unsupervised nonlinear and invertible feature extraction technique. The identified curvilinear features can be interpreted as a set of nonlinear sensors: the response of each sensor is the projection onto the corresponding feature. Moreover, it can be easily tuned for different optimization criteria; e.g. infomax, error minimization, decorrelation; by choosing the right way to measure distances along each curvilinear feature. Even though proposed in [Laparra et al. Neural Comp. 12] and shown to work in multiple modalities in [Laparra and Malo Frontiers Hum. Neuro. 15], the SPCA framework has its original roots in the nonlinear ICA algorithm in [Malo and Gutierrez Network 06]. Later on, the SPCA philosophy for nonlinear generalization of PCA originated substantially faster alternatives at the cost of introducing different constraints in the model. Namely, the Principal Polynomial Analysis (PPA) [Laparra et al. IJNS 14], and the Dimensionality Reduction via Regression (DRR) [Laparra et al. IEEE TGRS 15]. This report illustrates the reasons why we developed such family and is the appropriate technical companion for the missing details in [Laparra et al., NeCo 12, Laparra and Malo, Front.Hum.Neuro. 15]. See also the data, code and examples in the dedicated sites this http URL and this http URL effects.html

[1]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[2]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[3]  Valero Laparra,et al.  Visual aftereffects and sensory nonlinearities from a single statistical framework , 2015, Front. Hum. Neurosci..

[4]  Kilian Q. Weinberger,et al.  Unsupervised Learning of Image Manifolds by Semidefinite Programming , 2004, CVPR.

[5]  J. M. Foley,et al.  Human luminance pattern-vision mechanisms: masking experiments require a new model. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  Matthias Scholz,et al.  Nonlinear Principal Component Analysis: Neural Network Models and Applications , 2008 .

[7]  Donald I. A. MacLeod,et al.  Color discrimination, color constancy and natural scene statistics , 2002 .

[8]  Jan J Koenderink,et al.  The prior statistics of object colors. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[9]  M. Kramer Nonlinear principal component analysis using autoassociative neural networks , 1991 .

[10]  R. R. Clarke Transform coding of images , 1985 .

[11]  Matthew Brand,et al.  Charting a Manifold , 2002, NIPS.

[12]  Thomas M. Cover,et al.  Elements of information theory (2. ed.) , 2006 .

[13]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[14]  Aapo Hyvärinen,et al.  Nonlinear independent component analysis: Existence and uniqueness results , 1999, Neural Networks.

[15]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[16]  D. J. Donnell,et al.  Analysis of Additive Dependencies and Concurvities Using Smallest Additive Principal Components , 1994 .

[17]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[18]  Francesc J. Ferri,et al.  Regularization operators for natural images based on nonlinear perception models , 2006, IEEE Transactions on Image Processing.

[19]  M. Carandini,et al.  Summation and division by neurons in primate visual cortex. , 1994, Science.

[20]  Yee Whye Teh,et al.  Automatic Alignment of Local Representations , 2002, NIPS.

[21]  Eero P. Simoncelli,et al.  Nonlinear Extraction of Independent Components of Natural Images Using Radial Gaussianization , 2009, Neural Computation.

[22]  Guillermo Sapiro,et al.  Sparse Representation for Computer Vision and Pattern Recognition , 2010, Proceedings of the IEEE.

[23]  Pascual Capilla,et al.  Corresponding-pair procedure: a new approach to simulation of dichromatic color perception. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[24]  Valero Laparra,et al.  Divisive normalization image quality metric revisited. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[25]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[26]  Valero Laparra,et al.  Dimensionality Reduction via Regression in Hyperspectral Imagery , 2015, IEEE Journal of Selected Topics in Signal Processing.

[27]  S. Laughlin,et al.  Matching Coding to Scenes to Enhance Efficiency , 1983 .

[28]  P O Hoyer,et al.  Independent component analysis applied to feature extraction from colour and stereo images , 2000, Network.

[29]  Valero Laparra,et al.  Principal Polynomial Analysis , 2014, Int. J. Neural Syst..

[30]  Laura Schweitzer,et al.  Advances In Kernel Methods Support Vector Learning , 2016 .

[31]  Jochen Einbeck,et al.  Data Compression and Regression Based on Local Principal Curves , 2008, GfKl.

[32]  Geoffrey E. Hinton,et al.  Global Coordination of Local Linear Models , 2001, NIPS.

[33]  Christopher M. Bishop,et al.  GTM: The Generative Topographic Mapping , 1998, Neural Computation.

[34]  Valero Laparra,et al.  Nonlinearities and Adaptation of Color Vision from Sequential Principal Curves Analysis , 2016, Neural Computation.

[35]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[36]  Valero Laparra,et al.  Psychophysically Tuned Divisive Normalization Approximately Factorizes the PDF of Natural Images , 2010, Neural Computation.

[37]  Eero P. Simoncelli,et al.  Image compression via joint statistical characterization in the wavelet domain , 1999, IEEE Trans. Image Process..

[38]  Andriana Olmos,et al.  A biologically inspired algorithm for the recovery of shading and reflectance images , 2004 .

[39]  T. Hastie,et al.  Principal Curves , 2007 .

[40]  Valero Laparra,et al.  Iterative Gaussianization: From ICA to Random Rotations , 2011, IEEE Transactions on Neural Networks.

[41]  Terrence J. Sejnowski,et al.  Spatiochromatic Receptive Field Properties Derived from Information-Theoretic Analyses of Cone Mosaic Responses to Natural Scenes , 2003, Neural Computation.

[42]  Michael W. Marcellin,et al.  JPEG2000 - image compression fundamentals, standards and practice , 2002, The Kluwer International Series in Engineering and Computer Science.

[43]  Jesús Malo,et al.  Linear transform for simultaneous diagonalization of covariance and perceptual metric matrix in image coding , 2003, Pattern Recognit..

[44]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[45]  M. Carandini,et al.  Normalization as a canonical neural computation , 2013, Nature Reviews Neuroscience.

[46]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[47]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[48]  Gustavo Camps-Valls,et al.  On the Suitable Domain for SVM Training in Image Coding , 2008, J. Mach. Learn. Res..

[49]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[50]  M. Webster,et al.  Adaptation and the color statistics of natural images , 1997, Vision Research.

[51]  Eero P. Simoncelli,et al.  Nonlinear image representation for efficient perceptual coding , 2006, IEEE Transactions on Image Processing.

[52]  Leslie S. Smith,et al.  The principal components of natural images , 1992 .

[53]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[54]  Matthias Scholz,et al.  Nonlinear Principal Component Analysis: Neural Network Models and Applications , 2008 .

[55]  Deniz Erdogmus,et al.  Locally Defined Principal Curves and Surfaces , 2011, J. Mach. Learn. Res..

[56]  Ben J. A. Kröse,et al.  Coordinating Principal Component Analyzers , 2002, ICANN.

[57]  J A Solomon,et al.  Model of visual contrast gain control and pattern masking. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[58]  Aapo Hyvärinen,et al.  Bubbles: a unifying framework for low-level statistical properties of natural image sequences. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[59]  Valero Laparra,et al.  Nonlinear data description with Principal Polynomial Analysis , 2012, 2012 IEEE International Workshop on Machine Learning for Signal Processing.

[60]  J. Movshon,et al.  Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[61]  Christopher J. C. Burges,et al.  Geometry and invariance in kernel based methods , 1999 .

[62]  J. Malo,et al.  V1 non-linear properties emerge from local-to-global non-linear ICA , 2006, Network.

[63]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[64]  Aapo Hyvärinen,et al.  Natural Image Statistics - A Probabilistic Approach to Early Computational Vision , 2009, Computational Imaging and Vision.

[65]  Gerhard Tutz,et al.  Local principal curves , 2005, Stat. Comput..

[66]  Eero P. Simoncelli Statistical models for images: compression, restoration and synthesis , 1997, Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136).

[67]  Matthias Bethge,et al.  Lp-Nested Symmetric Distributions , 2010, J. Mach. Learn. Res..

[68]  P. Delicado Another Look at Principal Curves and Surfaces , 2001 .

[69]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.