Kinematic and dynamic model-based control of wheeled mobile manipulators: a unified framework for reactive approaches

The work presented in this paper aims at providing a unified modeling framework for the reactive control of wheeled mobile manipulators (WMM). Where most work in the literature often provides models, sometimes simplified, of a given type of WMM, an extensive description of the obtaining of explicit kinematic and dynamic models of those systems is given. This modeling framework is particularly well suited for reactive control approaches which, in the case of mobile manipulation missions, are often necessary to handle the complexity of the tasks to be fulfilled, the dynamic aspect of the extended workspace and the uncertainties on the knowledge of the environment. A flexible reactive framework is thus also provided, allowing the sequencing of operational tasks (in our case tasks described in the end-effector frame) whose natures are different but also an on-line switching mechanism between constraints that are to be satisfied using the system redundancy. This framework has been successfully implemented in simulation and on a real robot. Some of the obtained results are presented.

[1]  François G. Pin,et al.  Multi-criteria position and configuration optimization for redundant platform/manipulator systems , 1990, EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications.

[2]  Kazuhito Yokoi,et al.  Utilization of inertial effect in damping-based posture control of mobile manipulator , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[3]  Homayoun Seraji,et al.  An on-line approach to coordinated mobility and manipulation , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[4]  Alain Micaelli,et al.  Modeling and feedback control of mobile robots equipped with several steering wheels , 1996, IEEE Trans. Robotics Autom..

[5]  Vincent Padois,et al.  Enchaînements dynamiques de tâches pour des manipulateurs mobiles à roues , 2005 .

[6]  Pascal Morin,et al.  Practical stabilization of driftless systems on Lie groups: the transverse function approach , 2003, IEEE Trans. Autom. Control..

[7]  Pascal Morin,et al.  A Framework for the Control of Nonholonomic Mobile Manipulators , 2006, Int. J. Robotics Res..

[8]  Matthieu Herrb,et al.  A tool for the specification and the implementation of operating modules in a distributed robot architecture , 1999 .

[9]  Ronan Boulic,et al.  An inverse kinematics architecture enforcing an arbitrary number of strict priority levels , 2004, The Visual Computer.

[10]  Bojan Nemec,et al.  Torque-velocity control algorithm for on-line obstacle avoidance for mobile manipulators , 2003, IEEE International Conference on Industrial Technology, 2003.

[11]  Oussama Khatib,et al.  A unified approach for motion and force control of robot manipulators: The operational space formulation , 1987, IEEE J. Robotics Autom..

[12]  Georges Bastin,et al.  Structural properties and classification of kinematic and dynamic models of wheeled mobile robots , 1996, IEEE Trans. Robotics Autom..

[13]  Kostas J. Kyriakopoulos,et al.  Nonholonomic navigation and control of cooperating mobile manipulators , 2003, IEEE Trans. Robotics Autom..

[14]  Toshiyuki Murakami,et al.  Hybrid position/force control of a mobile manipulator based on cooperative task sharing , 1999, ISIE '99. Proceedings of the IEEE International Symposium on Industrial Electronics (Cat. No.99TH8465).

[15]  Ian D. Walker,et al.  Impact configurations and measures for kinematically redundant and multiple armed robot systems , 1994, IEEE Trans. Robotics Autom..

[16]  Oussama Khatib,et al.  Multi-Link Multi-Contact Force Control for Manipulators , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[17]  Vincent Padois,et al.  Controlling dynamic contact transition for nonholonomic mobile manipulators , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[18]  Kostas J. Kyriakopoulos,et al.  Mobile manipulator modeling with Kane's approach , 2001, Robotica.

[19]  Oliver Brock,et al.  Task-consistent obstacle avoidance and motion behavior for mobile manipulation , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[20]  Xiaoping Yun,et al.  Control and coordination of locomotion and manipulation of a wheeled mobile manipulator , 1994 .

[21]  Yoshihiko Nakamura,et al.  Advanced robotics - redundancy and optimization , 1990 .

[22]  D. T. Greenwood Principles of dynamics , 1965 .

[23]  Steven A. Velinsky,et al.  Modeling and control of a mobile manipulator , 1998, Robotica.

[24]  Jindong Tan,et al.  Unified model approach for planning and control of mobile manipulators , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[25]  Bernard Bayle Modélisation et commande cinématique des manipulateurs mobiles à roues , 2001 .

[26]  I-Ming Chen,et al.  A General Approach to the Dynamics of Nonholonomic Mobile Manipulator Systems , 2002 .

[27]  Vincent Padois,et al.  On Contact Transition for Nonholonomic Mobile Manipulators , 2006, ISER.

[28]  Bernard Bayle,et al.  Nonholonomic Mobile Manipulators: Kinematics, Velocities and Redundancies , 2003, J. Intell. Robotic Syst..

[29]  Xiaoping Yun,et al.  Coordinating locomotion and manipulation of a mobile manipulator , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.