Integrating Perception and Planning for Autonomous Navigation of Urban Vehicles

The paper addresses the problem of autonomous navigation of a car-like robot evolving in an urban environment. Such an environment exhibits an heterogeneous geometry and is cluttered with moving obstacles. Furthermore, in this context, motion safety is a critical issue. The proposed approach to the problem lies in the coupling of two crucial robotic capabilities, namely perception and planning. The main contributions of this work are the development and integration of these modules into one single application, considering explicitly the constraints related to the environment and the system

[1]  Klaus Dietmayer,et al.  Pedestrian recognition in urban traffic using a vehicle based multilayer laserscanner , 2002, Intelligent Vehicle Symposium, 2002. IEEE.

[2]  Thierry Fraichard,et al.  Planning continuous-curvature paths for car-like robots , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[3]  R. Siegwart,et al.  Autonomous Driving in Structured and Unstructured Environments , 2006, 2006 IEEE Intelligent Vehicles Symposium.

[4]  Sebastian Thrun,et al.  Robotic mapping: a survey , 2003 .

[5]  Wolfram Burgard,et al.  MINERVA: a second-generation museum tour-guide robot , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[6]  Scott Sanner,et al.  Towards object mapping in non-stationary environments with mobile robots , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[7]  Florent Lamiraux,et al.  Metric-Based Scan Matching Algorithms for Mobile Robot Displacement Estimation , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[8]  Patrick Rives,et al.  Vision-based Control for Car Platooning using Homography Decomposition , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[9]  Olivier Clatz,et al.  Dependable Perception for Robots , 2001 .

[10]  Xavier Pennec,et al.  Multi-scale EM-ICP: A Fast and Robust Approach for Surface Registration , 2002, ECCV.

[11]  Luis Montesano,et al.  Modeling the Static and the Dynamic Parts of the Environment to Improve Sensor-based Navigation , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[12]  Jean-Claude Latombe,et al.  Randomized Kinodynamic Motion Planning with Moving Obstacles , 2002, Int. J. Robotics Res..

[13]  Robert A. MacLachlan,et al.  Safe Robot Driving in Cluttered Environments , 2003, ISRR.

[14]  Tom Duckett,et al.  3D modelling for underground mining vehicles , 2005 .

[15]  Zhengyou Zhang,et al.  Iterative point matching for registration of free-form curves and surfaces , 1994, International Journal of Computer Vision.

[16]  Thierry Fraichard,et al.  Safe motion planning in dynamic environments , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  Hajime Asama,et al.  Inevitable collision states. A step towards safer robots? , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[18]  Thierry Fraichard,et al.  Motion prediction for moving objects: a statistical approach , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[19]  K. Fuerstenberg,et al.  Pedestrian Recognition and Tracking of Vehicles using a vehicle based Multilayer Laserscanner , 2003 .

[20]  Dirk Hähnel,et al.  Mapping with mobile robots , 2005 .

[21]  Christian Laugier,et al.  The CyCab: a car-like robot navigating autonomously and safely among pedestrians , 2005, Robotics Auton. Syst..

[22]  S SukhatmeGaurav,et al.  Mobile Robot Simultaneous Localization and Mapping in Dynamic Environments , 2005 .

[23]  Sebastian Thrun,et al.  Anytime Dynamic A*: An Anytime, Replanning Algorithm , 2005, ICAPS.

[24]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[25]  Gaurav S. Sukhatme,et al.  Mobile Robot Simultaneous Localization and Mapping in Dynamic Environments , 2005, Auton. Robots.

[26]  Nora Ripperda,et al.  MARKER-FREE REGISTRATION OF TERRESTRIAL LASER SCANS USING THE NORMAL DISTRIBUTION TRANSFORM , 2005 .

[27]  Arie E. Kaufman,et al.  Range image registration via probability field , 2004 .

[28]  Michel Parent AUTOMATED PUBLIC VEHICLES: A FIRST STEP TOWARDS THE AUTOMATED HIGHWAY , 1997 .

[29]  Peter Biber,et al.  The normal distributions transform: a new approach to laser scan matching , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[30]  Hugh F. Durrant-Whyte,et al.  Simultaneous Localization, Mapping and Moving Object Tracking , 2007, Int. J. Robotics Res..