Diverse motion variations for physics-based character animation

We present an optimization framework for generating diverse variations of physics-based character motions. This allows for the automatic synthesis of rich variations in style for simulated jumps, flips, and walks. While well-posed motion optimization problems result in a single optimal motion, we explore using underconstrained motion descriptions and then optimizing for diversity. As input, the method takes a parameterized controller for a successful motion instance, a set of constraints that should be preserved, and a pairwise distance metric between motions. An offline optimization then produces a highly diverse set of motion styles for the same task. We demonstrate results for a variety of 2D and 3D physics-based motions and show that this approach can generate compelling new motions.

[1]  David A. Forsyth,et al.  Sampling plausible solutions to multi-body constraint problems , 2000, SIGGRAPH.

[2]  Rasmus K. Ursem,et al.  Diversity-Guided Evolutionary Algorithms , 2002, PPSN.

[3]  David J. Fleet,et al.  Optimizing walking controllers , 2009, SIGGRAPH 2009.

[4]  Jessica K. Hodgins,et al.  Video-based 3D motion capture through biped control , 2012, ACM Trans. Graph..

[5]  Philippe Beaudoin,et al.  Continuation methods for adapting simulated skills , 2008, ACM Trans. Graph..

[6]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[7]  M. V. D. Panne,et al.  Sampling-based contact-rich motion control , 2010, ACM Trans. Graph..

[8]  Jehee Lee,et al.  Simulating biped behaviors from human motion data , 2007, SIGGRAPH 2007.

[9]  David J. Fleet,et al.  Optimizing walking controllers , 2009, ACM Trans. Graph..

[10]  M. V. D. Panne,et al.  SIMBICON: simple biped locomotion control , 2007, SIGGRAPH 2007.

[11]  David J. Fleet,et al.  Optimizing walking controllers for uncertain inputs and environments , 2010, ACM Trans. Graph..

[12]  Philippe Beaudoin,et al.  Generalized biped walking control , 2010, SIGGRAPH 2010.

[13]  Ziv Bar-Joseph,et al.  Modeling spatial and temporal variation in motion data , 2009, ACM Trans. Graph..

[14]  Lucas Kovar,et al.  Motion Graphs , 2002, ACM Trans. Graph..

[15]  Jovan Popovic,et al.  Simulation of Human Motion Data using Short‐Horizon Model‐Predictive Control , 2008, Comput. Graph. Forum.

[16]  A. Karpathy,et al.  Locomotion skills for simulated quadrupeds , 2011, ACM Trans. Graph..

[17]  Martin de Lasa,et al.  Feature-based locomotion controllers , 2010, ACM Trans. Graph..

[18]  Ken Perlin,et al.  Real Time Responsive Animation with Personality , 1995, IEEE Trans. Vis. Comput. Graph..

[19]  David J. Fleet,et al.  Multifactor Gaussian process models for style-content separation , 2007, ICML '07.

[20]  Aaron Hertzmann,et al.  Trajectory Optimization for Full-Body Movements with Complex Contacts , 2013, IEEE Transactions on Visualization and Computer Graphics.

[21]  Maneesh Agrawala,et al.  Interactive furniture layout using interior design guidelines , 2011, SIGGRAPH 2011.

[22]  Victor B. Zordan,et al.  Momentum control for balance , 2009, ACM Trans. Graph..

[23]  David J. Fleet,et al.  Optimizing walking controllers for uncertain inputs and environments , 2010, SIGGRAPH 2010.

[24]  C. Karen Liu,et al.  Optimal feedback control for character animation using an abstract model , 2010, ACM Trans. Graph..

[25]  Joaquim B. Cavalcante Neto,et al.  Using natural vibrations to guide control for locomotion , 2012, I3D '12.

[26]  Z. Popovic,et al.  Terrain-adaptive bipedal locomotion control , 2010, ACM Trans. Graph..

[27]  Jehee Lee,et al.  Simulating biped behaviors from human motion data , 2007, ACM Trans. Graph..

[28]  Lucas Kovar,et al.  Motion graphs , 2002, SIGGRAPH Classes.

[29]  M. van de Panne,et al.  Generalized biped walking control , 2010, ACM Trans. Graph..

[30]  C. Karen Liu,et al.  Synthesis of complex dynamic character motion from simple animations , 2002, ACM Trans. Graph..

[31]  Michiel van de Panne,et al.  Motion synthesis by example , 1996 .

[32]  Paul A. Beardsley,et al.  Design galleries: a general approach to setting parameters for computer graphics and animation , 1997, SIGGRAPH.

[33]  Jehee Lee,et al.  Data-driven biped control , 2010, SIGGRAPH 2010.

[34]  Bobby Bodenheimer,et al.  An evaluation of a cost metric for selecting transitions between motion segments , 2003, SCA '03.

[35]  Alexandra Coman,et al.  Generating Diverse Plans Using Quantitative and Qualitative Plan Distance Metrics , 2011, AAAI.

[36]  Barry O'Sullivan,et al.  Finding Diverse and Similar Solutions in Constraint Programming , 2005, AAAI.

[37]  Zoran Popović,et al.  Contact-aware nonlinear control of dynamic characters , 2009, SIGGRAPH 2009.

[38]  Aaron Hertzmann,et al.  Style machines , 2000, SIGGRAPH 2000.

[39]  Jovan Popovic,et al.  Style translation for human motion , 2005, ACM Trans. Graph..

[40]  Zoran Popovic,et al.  Contact-aware nonlinear control of dynamic characters , 2009, ACM Trans. Graph..

[41]  Taesoo Kwon,et al.  Control systems for human running using an inverted pendulum model and a reference motion capture sequence , 2010, SCA '10.

[42]  KangKang Yin,et al.  SIMBICON: simple biped locomotion control , 2007, ACM Trans. Graph..

[43]  Subbarao Kambhampati,et al.  Domain Independent Approaches for Finding Diverse Plans , 2007, IJCAI.

[44]  Philippe Beaudoin,et al.  Continuation methods for adapting simulated skills , 2008, SIGGRAPH 2008.

[45]  C. K. Liu,et al.  Optimal feedback control for character animation using an abstract model , 2010, ACM Trans. Graph..

[46]  Yoonsang Lee,et al.  Data-driven biped control , 2010, ACM Trans. Graph..

[47]  Doug L. James,et al.  Many-worlds browsing for control of multibody dynamics , 2007, SIGGRAPH 2007.

[48]  Victor B. Zordan,et al.  Momentum control for balance , 2009, SIGGRAPH 2009.