Swing-up time analysis of pendulum

Swing-up control of a single pendulum from the pendant to the upright position is firstly surveyed. The control laws are comparatively studied based on swing-up time from a given initial state to the upright position. The State Dependent Riccati Equation is found effective for designing the swing-up control law under saturating control input. The control law is extended to a linear combination of sine function of the angle and the angular velocity, and a variable structure control with a sliding mode given by the linear combination. Making the swing-up time correspond to a colour, which is similar to the Fractal analysis, colour maps of the swing-up time for given control parameters and initial conditions yield interesting Fractal-like figures.

[1]  T. Hoshino,et al.  Stabilization of The Triple Spherical Inverted Pendulum – A Simultaneous Design Approach , 2000 .

[2]  Mark W. Spong,et al.  Control of underactuated mechanical systems using switching and saturation , 1997 .

[3]  Katsuhisa Furuta,et al.  Control of unstable mechanical system Control of pendulum , 1976 .

[4]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[5]  K Furuta,et al.  Swing-up Control of Inverted Pendulum Using Pseudo-State Feedback , 1992 .

[6]  Wojciech Blajer A Projection Method Approach to Constrained Dynamic Analysis , 1992 .

[7]  Jun Zhao,et al.  Hybrid control for global stabilization of the cart-pendulum system , 2001, Autom..

[8]  A. E. Bryson,et al.  The synthesis of regulator logic using state-variable concepts , 1970 .

[9]  Katsuhisa Furuta,et al.  Swinging up a pendulum by energy control , 1996, Autom..

[10]  José Ángel Acosta,et al.  A New SG Law for Swinging the Furuta Pendulum Up , 2001 .

[11]  Graham C. Goodwin,et al.  Control System Design , 2000 .

[12]  D. J. Acheson,et al.  A pendulum theorem , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[13]  K. G. Eltohamy,et al.  Nonlinear optimal control of a triple link inverted pendulum with single control input , 1998 .

[14]  C. Y. Kuo,et al.  Real time stabilisation of a triple link inverted pendulum using single control input , 1997 .

[15]  W. Maletinsky,et al.  Observer Based Control of a Double Pendulum , 1981 .

[16]  Benoit B. Mandelbrot,et al.  Fractals and chaos : the Mandelbrot set and beyond : selecta volume C , 2004 .

[17]  Bernard Friedland,et al.  Control Systems Design , 1985 .

[18]  K. Furuta,et al.  Hand over control of unstable object using manipulators - an approach of continuously switching of controllers , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[19]  M. Bernhard Introduction to Chaotic Dynamical Systems , 1992 .

[20]  J. R. Cloutier,et al.  A preliminary control design for the nonlinear benchmark problem , 1996, Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro.

[21]  Rogelio Lozano,et al.  Stabilization of the Furuta Pendulum Around Its Homoclinic Orbit , 2001 .

[22]  T. Mullin,et al.  Upside-down pendulums , 1993, Nature.

[23]  N. Ono,et al.  Attitude control of a triple inverted pendulum , 1984 .