Motion Planning for Unlabeled Discs with Optimality Guarantees

We study the problem of path planning for unlabeled (indistinguishable) unit-disc robots in a planar environment cluttered with polygonal obstacles. We introduce an algorithm which minimizes the total path length, i.e., the sum of lengths of the individual paths. Our algorithm is guaranteed to find a solution if one exists, or report that none exists otherwise. It runs in time $\tilde{O}(m^4+m^2n^2)$, where $m$ is the number of robots and $n$ is the total complexity of the workspace. Moreover, the total length of the returned solution is at most $\text{OPT}+4m$, where OPT is the optimal solution cost. To the best of our knowledge this is the first algorithm for the problem that has such guarantees. The algorithm has been implemented in an exact manner and we present experimental results that attest to its efficiency.

[1]  J. Schwartz,et al.  On the Piano Movers' Problem: III. Coordinating the Motion of Several Independent Bodies: The Special Case of Circular Bodies Moving Amidst Polygonal Barriers , 1983 .

[2]  Paul G. Spirakis,et al.  Coordinating Pebble Motion on Graphs, the Diameter of Permutation Groups, and Applications , 2015, FOCS.

[3]  Paul G. Spirakis,et al.  Strong NP-Hardness of Moving Many Discs , 1984, Inf. Process. Lett..

[4]  Micha Sharir,et al.  On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles , 1986, Discret. Comput. Geom..

[5]  Tomas Lozano-Perez,et al.  On multiple moving objects , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[6]  John F. Canny,et al.  New lower bound techniques for robot motion planning problems , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[7]  Tomás Lozano-Pérez,et al.  Deadlock-free and collision-free coordination of two robot manipulators , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[8]  Steven M. LaValle,et al.  Optimal motion planning for multiple robots having independent goals , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[9]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[10]  Boris Aronov,et al.  Motion Planning for Multiple Robots , 1998, SCG '98.

[11]  Mark H. Overmars,et al.  Coordinated path planning for multiple robots , 1998, Robotics Auton. Syst..

[12]  Mimmo Parente,et al.  A Linear-Time Algorithm for the Feasibility of Pebble Motion on Trees , 1999, Algorithmica.

[13]  Srinivas Akella,et al.  Coordinating Multiple Robots with Kinodynamic Constraints Along Specified Paths , 2005, Int. J. Robotics Res..

[14]  Mark H. Overmars,et al.  Prioritized motion planning for multiple robots , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Jason M. O'Kane,et al.  Computing Pareto Optimal Coordinations on Roadmaps , 2005, Int. J. Robotics Res..

[16]  Srinivas Akella,et al.  Coordinating Multiple Droplets in Planar Array Digital Microfluidic Systems , 2005, Int. J. Robotics Res..

[17]  Seth Hutchinson,et al.  Path planning for permutation-invariant multirobot formations , 2005, IEEE Transactions on Robotics.

[18]  Raffaello D'Andrea,et al.  Coordinating Hundreds of Cooperative, Autonomous Vehicles in Warehouses , 2007, AI Mag..

[19]  Kurt Mehlhorn,et al.  Classroom Examples of Robustness Problems in Geometric Computations , 2004, ESA.

[20]  János Pach,et al.  Reconfigurations in Graphs and Grids , 2008, SIAM J. Discret. Math..

[21]  Refael Hassin,et al.  Multi-Color Pebble Motion on Graphs , 2009, Algorithmica.

[22]  Dinesh Manocha,et al.  Centralized path planning for multiple robots: Optimal decoupling into sequential plans , 2009, Robotics: Science and Systems.

[23]  Kostas E. Bekris,et al.  An Efficient and Complete Approach for Cooperative Path-Finding , 2011, AAAI.

[24]  Steven M. LaValle,et al.  Distance optimal formation control on graphs with a tight convergence time guarantee , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[25]  Roland Geraerts,et al.  Space-Time Group Motion Planning , 2012, WAFR.

[26]  Steven M. LaValle,et al.  Multi-agent Path Planning and Network Flow , 2012, WAFR.

[27]  Dan Halperin,et al.  CGAL Arrangements and Their Applications - A Step-by-Step Guide , 2012, Geometry and Computing.

[28]  Vijay Kumar,et al.  Trajectory Planning and Assignment in Multirobot Systems , 2012, WAFR.

[29]  Vijay Kumar,et al.  Concurrent assignment and planning of trajectories for large teams of interchangeable robots , 2013, 2013 IEEE International Conference on Robotics and Automation.

[30]  Vijay Kumar,et al.  Goal Assignment and Trajectory Planning for Large Teams of Aerial Robots , 2013, Robotics: Science and Systems.

[31]  Steven M. LaValle,et al.  Efficient formation path planning on large graphs , 2013, 2013 IEEE International Conference on Robotics and Automation.

[32]  Jingjin Yu A Linear Time Algorithm for the Feasibility of Pebble Motion on Graphs , 2013, ArXiv.

[33]  Steven M. LaValle,et al.  Planning optimal paths for multiple robots on graphs , 2012, 2013 IEEE International Conference on Robotics and Automation.

[34]  Kostas E. Bekris,et al.  From Feasibility Tests to Path Planners for Multi-Agent Pathfinding , 2013, SOCS.

[35]  Mark de Berg,et al.  Efficient Multi-Robot Motion Planning for Unlabeled Discs in Simple Polygons , 2013, IEEE Transactions on Automation Science and Engineering.

[36]  José L. Ayala,et al.  A geometric approach to shortest bounded curvature paths , 2014, 1403.4899.

[37]  Dan Halperin,et al.  k-color multi-robot motion planning , 2012, Int. J. Robotics Res..

[38]  D. Halperin,et al.  Finding a needle in an exponential haystack: Discrete RRT for exploration of implicit roadmaps in multi-robot motion planning , 2013, Int. J. Robotics Res..

[39]  Howie Choset,et al.  Subdimensional expansion for multirobot path planning , 2015, Artif. Intell..

[40]  Dan Halperin,et al.  On the Power of Manifold Samples in Exploring Configuration Spaces and the Dimensionality of Narrow Passages , 2012, IEEE Transactions on Automation Science and Engineering.

[41]  Dan Halperin,et al.  On the hardness of unlabeled multi-robot motion planning , 2014, Int. J. Robotics Res..

[42]  Pierre Alliez,et al.  CGAL - The Computational Geometry Algorithms Library , 2011 .

[43]  E. J.,et al.  ON THE COMPLEXITY OF MOTION PLANNING FOR MULTIPLE INDEPENDENT OBJECTS ; PSPACE HARDNESS OF THE " WAREHOUSEMAN ' S PROBLEM " . * * ) , 2022 .