Action Sequence Predictions of Vehicles in Urban Environments using Map and Social Context

This work studies the problem of predicting the sequence of future actions for surround vehicles in real-world driving scenarios. To this aim, we make three main contributions. The first contribution is an automatic method to convert the trajectories recorded in real-world driving scenarios to action sequences with the help of HD maps. The method enables automatic dataset creation for this task from large-scale driving data. Our second contribution lies in applying the method to the well-known traffic agent tracking and prediction dataset Argoverse, resulting in 228,000 action sequences. Additionally, 2,245 action sequences were manually annotated for testing. The third contribution is to propose a novel action sequence prediction method by integrating past positions and velocities of the traffic agents, map information and social context into a single end-to-end trainable neural network. Our experiments prove the merit of the data creation method and the value of the created dataset - prediction performance improves consistently with the size of the dataset and shows that our action prediction method outperforms comparing models.

[1]  Silvio Savarese,et al.  SoPhie: An Attentive GAN for Predicting Paths Compliant to Social and Physical Constraints , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Sergio Casas,et al.  IntentNet: Learning to Predict Intention from Raw Sensor Data , 2018, CoRL.

[3]  Mohan M. Trivedi,et al.  Surround vehicles trajectory analysis with recurrent neural networks , 2016, 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC).

[4]  Luc Van Gool,et al.  You'll never walk alone: Modeling social behavior for multi-target tracking , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[5]  Silvio Savarese,et al.  Social LSTM: Human Trajectory Prediction in Crowded Spaces , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Luc Van Gool,et al.  End-to-End Learning of Driving Models with Surround-View Cameras and Route Planners , 2018, ECCV.

[7]  Volker Willert,et al.  Bayesian, maneuver-based, long-term trajectory prediction and criticality assessment for driver assistance systems , 2014, 17th International IEEE Conference on Intelligent Transportation Systems (ITSC).

[8]  Philip H. S. Torr,et al.  DESIRE: Distant Future Prediction in Dynamic Scenes with Interacting Agents , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Mayank Bansal,et al.  ChauffeurNet: Learning to Drive by Imitating the Best and Synthesizing the Worst , 2018, Robotics: Science and Systems.

[10]  Andreas Geiger,et al.  Vision meets robotics: The KITTI dataset , 2013, Int. J. Robotics Res..

[11]  Benjamin Sapp,et al.  Rules of the Road: Predicting Driving Behavior With a Convolutional Model of Semantic Interactions , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Klaus-Dieter Kuhnert,et al.  A lane change detection approach using feature ranking with maximized predictive power , 2014, 2014 IEEE Intelligent Vehicles Symposium Proceedings.

[13]  Simon Lucey,et al.  Argoverse: 3D Tracking and Forecasting With Rich Maps , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Amaury Nègre,et al.  Probabilistic Analysis of Dynamic Scenes and Collision Risks Assessment to Improve Driving Safety , 2011, IEEE Intelligent Transportation Systems Magazine.

[15]  Qiang Xu,et al.  nuScenes: A Multimodal Dataset for Autonomous Driving , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Mohan M. Trivedi,et al.  How Would Surround Vehicles Move? A Unified Framework for Maneuver Classification and Motion Prediction , 2018, IEEE Transactions on Intelligent Vehicles.

[17]  Véronique Berge-Cherfaoui,et al.  Vehicle trajectory prediction based on motion model and maneuver recognition , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Mooi Choo Chuah,et al.  GRIP: Graph-based Interaction-aware Trajectory Prediction , 2019, 2019 IEEE Intelligent Transportation Systems Conference (ITSC).

[19]  Chung Choo Chung,et al.  Probabilistic vehicle trajectory prediction over occupancy grid map via recurrent neural network , 2017, 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC).

[20]  Hema Swetha Koppula,et al.  Car that Knows Before You Do: Anticipating Maneuvers via Learning Temporal Driving Models , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[21]  Mohan M. Trivedi,et al.  Multi-Modal Trajectory Prediction of Surrounding Vehicles with Maneuver based LSTMs , 2018, 2018 IEEE Intelligent Vehicles Symposium (IV).

[22]  Silvio Savarese,et al.  Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[23]  Anup Doshi,et al.  Lane change intent prediction for driver assistance: On-road design and evaluation , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).