Generative Sparse Detection Networks for 3D Single-shot Object Detection

3D object detection has been widely studied due to its potential applicability to many promising areas such as robotics and augmented reality. Yet, the sparse nature of the 3D data poses unique challenges to this task. Most notably, the observable surface of the 3D point clouds is disjoint from the center of the instance to ground the bounding box prediction on. To this end, we propose Generative Sparse Detection Network (GSDN), a fully-convolutional single-shot sparse detection network that efficiently generates the support for object proposals. The key component of our model is a generative sparse tensor decoder, which uses a series of transposed convolutions and pruning layers to expand the support of sparse tensors while discarding unlikely object centers to maintain minimal runtime and memory footprint. GSDN can process unprecedentedly large-scale inputs with a single fully-convolutional feed-forward pass, thus does not require the heuristic post-processing stage that stitches results from sliding windows as other previous methods have. We validate our approach on three 3D indoor datasets including the large-scale 3D indoor reconstruction dataset where our method outperforms the state-of-the-art methods by a relative improvement of 7.14% while being 3.78 times faster than the best prior work.

[1]  Ali Farhadi,et al.  YOLO9000: Better, Faster, Stronger , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Matthias Nießner,et al.  ScanComplete: Large-Scale Scene Completion and Semantic Segmentation for 3D Scans , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[3]  Vladlen Koltun,et al.  Fully Convolutional Geometric Features , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[4]  Thomas Brox,et al.  Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[5]  Richard A. Newcombe,et al.  DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Chen Liu,et al.  MASC: Multi-scale Affinity with Sparse Convolution for 3D Instance Segmentation , 2019, ArXiv.

[7]  Sebastian Scherer,et al.  VoxNet: A 3D Convolutional Neural Network for real-time object recognition , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[8]  Sebastian Nowozin,et al.  Occupancy Networks: Learning 3D Reconstruction in Function Space , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Kaiming He,et al.  Feature Pyramid Networks for Object Detection , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Tian Xia,et al.  Vehicle Detection from 3D Lidar Using Fully Convolutional Network , 2016, Robotics: Science and Systems.

[11]  Ingmar Posner,et al.  Voting for Voting in Online Point Cloud Object Detection , 2015, Robotics: Science and Systems.

[12]  Silvio Savarese,et al.  3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction , 2016, ECCV.

[13]  Laurens van der Maaten,et al.  Submanifold Sparse Convolutional Networks , 2017, ArXiv.

[14]  Angela Dai,et al.  SG-NN: Sparse Generative Neural Networks for Self-Supervised Scene Completion of RGB-D Scans , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Silvio Savarese,et al.  4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Bo Yang,et al.  Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds , 2019, NeurIPS.

[17]  Wei Liu,et al.  SSD: Single Shot MultiBox Detector , 2015, ECCV.

[18]  Bernard Ghanem,et al.  3D Instance Segmentation via Multi-Task Metric Learning , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[19]  Martial Hebert,et al.  PCN: Point Completion Network , 2018, 2018 International Conference on 3D Vision (3DV).

[20]  Laurens van der Maaten,et al.  3D Semantic Segmentation with Submanifold Sparse Convolutional Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[21]  Ole Tange,et al.  GNU Parallel: The Command-Line Power Tool , 2011, login Usenix Mag..

[22]  Erich Elsen,et al.  Exploring Sparsity in Recurrent Neural Networks , 2017, ICLR.

[23]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Shu Liu,et al.  Associatively Segmenting Instances and Semantics in Point Clouds , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Jitendra Malik,et al.  Gibson Env: Real-World Perception for Embodied Agents , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[26]  Yin Zhou,et al.  VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[27]  Ulrich Neumann,et al.  SGPN: Similarity Group Proposal Network for 3D Point Cloud Instance Segmentation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[28]  Leonidas J. Guibas,et al.  Frustum PointNets for 3D Object Detection from RGB-D Data , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[29]  Jianxiong Xiao,et al.  Deep Sliding Shapes for Amodal 3D Object Detection in RGB-D Images , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Silvio Savarese,et al.  3D Semantic Parsing of Large-Scale Indoor Spaces , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  William J. Dally,et al.  SCNN: An accelerator for compressed-sparse convolutional neural networks , 2017, 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA).

[32]  Leonidas J. Guibas,et al.  Deep Hough Voting for 3D Object Detection in Point Clouds , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[33]  Song Han,et al.  Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding , 2015, ICLR.

[34]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Matthias Nießner,et al.  3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Matthias Nießner,et al.  ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Leonidas J. Guibas,et al.  GSPN: Generative Shape Proposal Network for 3D Instance Segmentation in Point Cloud , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[38]  Ross B. Girshick,et al.  Mask R-CNN , 2017, 1703.06870.

[39]  Silvio Savarese,et al.  TopNet: Structural Point Cloud Decoder , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).