A Hybrid Controller for Stability Robustness, Performance Robustness, and Disturbance Attenuation of a Maglev System

A HYBRID CONTROLLER FOR STABILITY ROBUSTNESS, PERFORMANCE ROBUSTNESS, AND DISTURBANCE ATTENUATION OF A MAGLEV SYSTEM Feng Tian, B.S., M.S. Marquette University, 2015 Devices using magnetic levitation (maglev) offer the potential for friction-free, high-speed, and high-precision operation. Applications include frictionless bearings, high-speed ground transportation systems, wafer distribution systems, high-precision positioning stages, and vibration isolation tables. Maglev systems rely on feedback controllers to maintain stable levitation. Designing such feedback controllers is challenging since mathematically the electromagnetic force is nonlinear and there is no local minimum point on the levitating force function. As a result, maglev systems are open-loop unstable. Additionally, maglev systems experience disturbances and system parameter variations (uncertainties) during operation. A successful controller design for maglev system guarantees stability during levitating despite system nonlinearity, and desirable system performance despite disturbances and system uncertainties. This research investigates five controllers that can achieve stable levitation: PD, PID, lead, model reference control, and LQR/LQG. It proposes an acceleration feedback controller (AFC) design that attenuates disturbance on a maglev system with a PD controller. This research proposes three robust controllers, QFT, H , and QFT/ H , followed by a novel AFC-enhanced QFT/ H (AQH) controller. The AQH controller allows system robustness and disturbance attenuation to be achieved in one controller design. The controller designs are validated through simulations and experiments. In this research, the disturbances are represented by force disturbances on the levitated object, and the system uncertainties are represented by parameter variations. The experiments are conducted on a 1 DOF maglev testbed, with system performance including stability, disturbance rejection, and robustness being evaluated. Experiments show that the tested controllers can maintain stable levitation. Disturbance attenuation is achieved with the AFC. The robust controllers, QFT, H , QFT/ H , and AQH successfully guarantee system robustness. In addition, AQH controller provides the maglev system with a disturbance attenuation feature. The contributions of this research are the design and implementation of the acceleration feedback controller, the QFT/ H , and the AQH controller. Disturbance attenuation and system robustness are achieved with these controllers. The controllers developed in this research are applicable to similar maglev systems.

[1]  I. Horowitz Invited paper Survey of quantitative feedback theory (QFT) , 1991 .

[2]  Isaac Horowitz,et al.  Quantitative feedback design theory : QFT , 1993 .

[3]  Milan Janic,et al.  Multicriteria Evaluation of High-speed Rail, Transrapid Maglev and Air Passenger Transport in Europe , 2003 .

[4]  T. V. Sheehan,et al.  For Mechanical Engineers , 1965 .

[5]  P. Parks A new proof of the Routh-Hurwitz stability criterion using the second method of Liapunov , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  G. Zames,et al.  On H ∞ -optimal sensitivity theory for SISO feedback systems , 1984 .

[7]  Dan Eaton,et al.  Magnetic bearing applications & economics , 2010, 2010 Record of Conference Papers Industry Applications Society 57th Annual Petroleum and Chemical Industry Conference (PCIC).

[8]  Syuan-Yi Chen,et al.  Intelligent integral backstepping sliding mode control using recurrent neural network for magnetic levitation system , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[9]  Yogesh V. Hote,et al.  Design of PID Controller for Unstable System , 2011 .

[10]  David L. Trumper,et al.  Magnetic bearing stage for photolithography , 1993 .

[11]  J. Yonnet Passive magnetic bearings with permanent magnets , 1978 .

[12]  S. H. Johnson,et al.  An introduction to the theory of linear systems , 1977 .

[13]  Kevin C. Craig Is anything really new in mechatronics education? , 2001, IEEE Robotics Autom. Mag..

[14]  Franco Blanchid ROBUST STABILIZATION VIA COMPUTER-GENERATED LYAPUNOV FUNCTIONS: AN APPLICATION TO A MAGNETIC LEVITATION SYSTEM. , 1994 .

[15]  J. D. Yau,et al.  Vibration control of maglev vehicles traveling over a flexible guideway , 2009 .

[16]  Mark L. Nagurka,et al.  Automatic Loop Shaping of Structured Controllers Satisfying QFT Performance , 2005 .

[17]  Rohit G. Kanojiya,et al.  Tuning of PID controller using Ziegler-Nichols method for speed control of DC motor , 2012, IEEE-International Conference On Advances In Engineering, Science And Management (ICAESM -2012).

[18]  Katsuhide Watanabe,et al.  Combination of H/sup /spl infin// and PI control for an electromagnetically levitated vibration isolation system , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[19]  Toshiro Shimada,et al.  HSST-03 SYSTEM , 1984 .

[20]  C. D. Souza,et al.  On stabilizing properties of solutions of the Riccati difference equation , 1989 .

[21]  Guoxiang Gu,et al.  A class of algorithms for identification in H∞: continuous-time case , 1993, IEEE Trans. Autom. Control..

[22]  I︠a︡. Z. T︠S︡ypkin,et al.  Foundations of the theory of learning systems , 1973 .

[23]  C. Winsor,et al.  Design of model reference adaptive control systems by Liapunov's second method , 1968 .

[24]  Markus Ahrens,et al.  Performance of a magnetically suspended flywheel energy storage device , 1996, IEEE Trans. Control. Syst. Technol..

[25]  H. J. Pesch A Practical Guide to the Solution of Real-Life Optimal Control Problems , 1994 .

[26]  I. Horowitz Quantitative feedback theory , 1982 .

[27]  Yucheng Ding,et al.  Review of the wafer stage for nanoimprint lithography , 2007 .

[28]  Don-Ha Hwang,et al.  High-Precision Positioning Control of Magnetic Levitation System , 2006, IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics.

[29]  B. Shafai,et al.  Magnetic bearing control systems and adaptive forced balancing , 1994, IEEE Control Systems.

[31]  Carl R. Knospe,et al.  Reducing magnetic bearing currents via gain scheduled adaptive control , 2001 .

[32]  A.R. Eastham,et al.  Maglev systems development status , 1988, IEEE Aerospace and Electronic Systems Magazine.

[33]  Robert Erck,et al.  Flywheel energy storage using superconducting magnetic bearings , 1994 .

[34]  S. Earnshaw On the Nature of the Molecular Forces , 1842 .

[35]  Chia-Hsiang Menq,et al.  Ultra precision motion control of a multiple degrees of freedom magnetic suspension stage , 2002 .

[36]  Nan-Chyuan Tsai,et al.  Robust sliding mode control for axial AMB systems , 2004, 2004 5th Asian Control Conference (IEEE Cat. No.04EX904).

[37]  M. Lairi,et al.  A neural network with minimal structure for maglev system modeling and control , 1999, Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014).

[38]  Andrzej Polanski,et al.  On absolute stability analysis by polyhedral Lyapunov functions , 2000, Autom..

[39]  Paul E. Allaire,et al.  Digital control of active magnetic bearings , 1990 .

[40]  S. Kanda,et al.  A linear induction motor control system for magnetically levitated carrier system , 1989 .

[41]  Y. Neimark D-partition and robust stability , 1998 .

[42]  Carl R. Knospe,et al.  Active magnetic bearings for machining applications , 2004 .

[43]  K. Glover,et al.  State-space formulae for all stabilizing controllers that satisfy an H(infinity)-norm bound and relations to risk sensitivity , 1988 .

[44]  K. Craig Mechatronics at Rensselaer: a two-course senior-elective sequence in mechanical engineering , 1999, 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No.99TH8399).

[45]  Rhodes,et al.  Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games , 1973 .

[46]  Y. Hori Position and mechanical impedance control method of robot actuators based on the acceleration control , 1989, 20th Annual IEEE Power Electronics Specialists Conference.

[47]  Rong-Jong Wai,et al.  Design of backstepping particle-swarmoptimisation control for maglev transportation system , 2010 .

[48]  Bernard Friedland,et al.  Advanced Control System Design , 1996 .

[49]  M. Tomizuka,et al.  Six-DOF maglev nano precision microstage development , 2010, 2010 International Conference on Mechanic Automation and Control Engineering.

[50]  Young Chol Kim,et al.  Gain scheduled control of magnetic suspension system , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[51]  M. A. Henson,et al.  Input‐output linearization of general nonlinear processes , 1990 .

[52]  Katsuhiko Ogata,et al.  Modern Control Engineering , 1970 .

[53]  I. Horowitz,et al.  Synthesis of cascaded multiple-loop feedback systems with large plant parameter ignorance , 1973 .

[54]  M. T. Thompson Eddy current magnetic levitation. Models and experiments , 2000 .

[55]  Antonino Musolino,et al.  A self-controlled MAGLEV system , 2012 .

[56]  H. Habermann,et al.  Control: Practical magnetic bearings: Electronically controlled electromagnets support spinning 1100-kg shafts to micrometer accuracy , 1979, IEEE Spectrum.

[57]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[58]  Chia-Hsiang Menq,et al.  Robust disturbance rejection for improved dynamic stiffness of a magnetic suspension stage , 2002 .

[59]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[60]  Marcel Sidi,et al.  Feedback synthesis with plant ignorance, nonminimum-phase, and time-domain tolerances , 1976, Autom..

[61]  Guo Zhiwei,et al.  Adaptive sliding mode controller apply to a high-precision positioning platform , 2008, 2008 27th Chinese Control Conference.

[62]  E.E. Covert Magnetic suspension and balance systems , 1988, IEEE Aerospace and Electronic Systems Magazine.

[63]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[64]  B. Anderson,et al.  Robust model reference adaptive control , 1986 .

[65]  Y. Tanno,et al.  Magnetic bearing having PID controller and discontinuous controller , 1993, Proceedings of IECON '93 - 19th Annual Conference of IEEE Industrial Electronics.

[66]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[67]  Kumpati S. Narendra,et al.  Adaptation and learning in automatic systems , 1974 .

[68]  Faa-Jeng Lin,et al.  Intelligent Adaptive Backstepping Control System for Magnetic Levitation Apparatus , 2007, IEEE Transactions on Magnetics.

[69]  박재욱,et al.  출력 미분값의 추정을 통한 자기부상 시스템의 로보스트 비선형 제어 ( Robust Nonlinear Control of Magnetic Levitation System using Output Derivative Estimation ) , 1995 .

[70]  F. Da Lio On the Bellman Equation for Infinite Horizon Problems with Unbounded Cost Functional , 2000 .

[71]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[72]  R. Matušů Robust Control of Systems with Parametric Uncertainty: An Algebraic Approach , 2007 .

[73]  M.H. Rashid,et al.  A brief history and theory behind AC, DC and maglev trains and subways , 2005, Proceedings of the 37th Annual North American Power Symposium, 2005..

[74]  Richard D. Thornton,et al.  Efficient and Affordable Maglev Opportunities in the United States , 2009, Proceedings of the IEEE.

[75]  C. Akujuobi,et al.  Magnetic levitation , 2006, IEEE Potentials.

[76]  Robert E. Kalaba,et al.  Dynamic Programming and Modern Control Theory , 1966 .

[77]  Mohammad Teshnehlab,et al.  Sliding Mode Control of Magnetic Levitation System Using Radial Basis Function Neural Networks , 2008, 2008 IEEE Conference on Robotics, Automation and Mechatronics.

[78]  Won-Jong Kim,et al.  Extended Range Six-DOF High-Precision Positioner for Wafer Processing , 2006, IEEE/ASME Transactions on Mechatronics.

[79]  H. Gutberlet The German magnetic transportation program , 1974 .

[80]  Zi-Jiang Yang,et al.  Robust Output Feedback Control of a Class of Nonlinear Systems Using a Disturbance Observer , 2011, IEEE Transactions on Control Systems Technology.

[81]  Tomas Tekorius,et al.  Investigation of P and PD Controllers' Performance in Control Systems with Steady-State Error Compensation , 2012 .

[82]  B. V. Jayawant,et al.  Electromagnetic suspension and levitation , 1981 .

[83]  Yoon Keun Kwak,et al.  Wafer distribution system for a clean room using a novel magnetic suspension technique , 1998 .

[84]  M. Feemster,et al.  Nonlinear disturbance rejection for magnetic levitation systems , 2003, Proceedings of the 2003 IEEE International Symposium on Intelligent Control.

[85]  P. Budig,et al.  Magnetic bearings with DC Bias: Design and optimum material choice , 2008, 2008 International Symposium on Power Electronics, Electrical Drives, Automation and Motion.

[86]  Liu Hsu,et al.  Variable structure model reference adaptive control using only input and output measurements , 1989 .

[87]  K. Ramar,et al.  Stability of systems with rhp pole-zero cancellations† , 1970 .

[88]  L. S. Tung,et al.  Final Progress Report for the NASA Inductrack Model Rocket Launcher at the Lawrence Livermore National Laboratory , 2001 .

[89]  Kevin C. Craig,et al.  Mechatronic system design at Rensselaer , 1996 .

[90]  B. Drazenovic,et al.  The invariance conditions in variable structure systems , 1969, Autom..

[91]  T. Basar,et al.  H∞-0ptimal Control and Related Minimax Design Problems: A Dynamic Game Approach , 1996, IEEE Trans. Autom. Control..

[92]  Chang-Chieh Hang,et al.  Comparative studies of model reference adaptive control systems , 1973 .

[93]  Martin Hynes,et al.  PWM control of a magnetic suspension system , 2004, IEEE Transactions on Education.

[94]  Feng Tian,et al.  Disturbance attenuation in a magnetic levitation system with acceleration feedback , 2011, 2011 IEEE International Conference on Industrial Technology.

[95]  M. Vagia,et al.  Robust PID-control design for an electrostatic micromechanical? actuator with structured uncertainty , 2007, 2007 Mediterranean Conference on Control & Automation.

[96]  E Masada,et al.  PRESENT STATUS OF MAGLEV DEVELOPMENT IN JAPAN AND HSST-03 PROJECT , 1984 .

[97]  Jin-Ho Seo,et al.  Design and analysis of the nonlinear feedback linearizing control for an electromagnetic suspension system , 1996, IEEE Trans. Control. Syst. Technol..

[98]  Celso J. Munaro,et al.  A design methodology of tracking controllers for magnetic levitation systems , 2001, Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204).

[99]  Yakov Z. Tsypkin,et al.  Robust identification , 1980, Autom..

[100]  V. Kharitonov Asympotic stability of an equilibrium position of a family of systems of linear differntial equations , 1978 .

[101]  Masaharu Minami,et al.  Study on high temperature superconducting magnetic bearing for 10 kWh flywheel energy storage system , 2001 .

[102]  V. V. Chalam,et al.  Lyapunov Redesign of Model Reference Adaptive Control Systems (Part I) , 1979 .

[103]  P. Pranayanuntana,et al.  Nonlinear backstepping control design applied to magnetic ball control , 2000, 2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No.00CH37119).

[104]  R. Storey,et al.  Superconducting magnetic bearings for energy storage flywheels , 1999, IEEE Transactions on Applied Superconductivity.

[105]  Emanuel Todorov,et al.  Stochastic Optimal Control and Estimation Methods Adapted to the Noise Characteristics of the Sensorimotor System , 2005, Neural Computation.

[106]  Karl Brammer,et al.  Kalman-Bucy-Filter: Deterministische Beobachtung und stochastische Filterung , 1993 .

[107]  M. Shvartsas,et al.  Eddy-currents levitation system , 2012, 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel.

[108]  Marcel Sidi,et al.  A combined QFT/H ∞ design technique for TDOF uncertain feedback systems , 2002 .

[109]  W. J. Mayer,et al.  The high speed Maglev transport system TRANSRAPID , 1988 .

[110]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[111]  B. Shackcloth,et al.  Synthesis of Model Reference Adaptive Systems by Liapunov's Second Method , 1965 .

[112]  Marcel J. Sidi,et al.  Spacecraft Dynamics and Control: A Practical Engineering Approach , 1997 .

[113]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[114]  G. Stein,et al.  Performance and robustness analysis for structured uncertainty , 1982, 1982 21st IEEE Conference on Decision and Control.

[115]  S. Aoki,et al.  3-dimensional magnetic field calculation of the levitation magnet for HSST by the finite element method , 1980 .

[116]  S. Adelman Modern control system theory and application , 1979, Proceedings of the IEEE.

[117]  George T. Gillies,et al.  Digital controller for a magnetic suspension system , 1986 .

[118]  Yuji Ishino,et al.  Development of a three-axis active vibration isolation system using zero-power magnetic suspension , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[119]  Tudor Ionescu,et al.  Discrete model reference adaptive control with an augmented error signal , 1975, Autom..

[120]  J. Apkarian,et al.  A high-precision, magnetically levitated positioning stage: toward contactless actuation for industrial manufacturing , 2006, IEEE Control Systems.

[121]  R. G. Rhodes,et al.  Electromagnetic Suspension—Dynamics and Control , 1989 .

[122]  J. R. Powell,et al.  Maglev vehicles-raising transportation advances of the ground , 1996 .

[123]  M.A. Rahman,et al.  Super high speed electrical machines - summary , 2004, IEEE Power Engineering Society General Meeting, 2004..

[124]  S. Bhattacharyya,et al.  A generalization of Kharitonov's theorem; Robust stability of interval plants , 1989 .

[125]  E. Maslen,et al.  Passive magnetic bearing for flywheel energy storage systems , 2001 .

[126]  G. Schweitzer,et al.  Magnetic bearings : theory, design, and application to rotating machinery , 2009 .

[127]  M. Weinstein Lyapunov stability of ground states of nonlinear dispersive evolution equations , 1986 .

[128]  Graham C. Goodwin,et al.  A parameter estimation perspective of continuous time model reference adaptive control , 1987, Autom..

[129]  P. Mäkilä Worst-case input-output identification , 1992 .

[130]  Riccardo Marino,et al.  Nonlinear control design: geometric, adaptive and robust , 1995 .

[131]  David L. Trumper,et al.  High-precision magnetic levitation stage for photolithography , 1998 .

[132]  J. A. Bryson Optimal control-1950 to 1985 , 1996 .

[133]  Ichiro Miyashita,et al.  Linear Motor Drive System for the Normal Conductivity Maglev Vehicle HSST-05 , 1990 .

[134]  Yan Luguang Progress of the Maglev Transportation in China , 2006, IEEE Transactions on Applied Superconductivity.

[135]  Oded Yaniv,et al.  Quantitative Feedback Theory - Reply to Doyle's Criticisms , 1987, 1987 American Control Conference.

[136]  Rajesh Kumar Nema,et al.  Effect of Adaptation Gain on system Performance for Model Reference Adaptive Control Scheme using MIT Rule , 2010 .

[137]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[138]  Tadahiko Shinshi,et al.  Third-generation blood pumps with mechanical noncontact magnetic bearings. , 2006, Artificial organs.

[139]  B. Ross Barmish,et al.  New Tools for Robustness of Linear Systems , 1993 .

[140]  A. Jalilvand,et al.  Magnetic levitation control based-on neural network and feedback error learning approach , 2008, 2008 IEEE 2nd International Power and Energy Conference.

[141]  R. Meisinger,et al.  The "Magnetic wheel" in the suspension of high-speed ground transportation vehicles , 1980, IEEE Transactions on Vehicular Technology.

[142]  Kaufman,et al.  Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations. , 1987, Physical review. A, General physics.

[143]  Tsu-Chin Tsao,et al.  UPL-2460 REPETITIVE CONTROL OF A LEVITATED SHAFT-FPGA IMPLEMENTATI ON BASED ON POWELL-CHAU FILTERS , 2010 .

[144]  David L. Trumper,et al.  The long-range scanning stage: a novel platform for scanned-probe microscopy , 2000 .

[145]  D. Cho,et al.  Sliding mode and classical controllers in magnetic levitation systems , 1993, IEEE Control Systems.

[146]  John C. Doyle Quantitative Feedback Theory (QFT) and Robust Control , 1986, 1986 American Control Conference.

[147]  Toshiaki Murai,et al.  Electromagnetic analysis of inductrack magnetic levitation , 2003 .

[148]  R. Monopoli Model reference adaptive control with an augmented error signal , 1974 .

[149]  John Chiasson,et al.  Linear and nonlinear state-space controllers for magnetic levitation , 1996, Int. J. Syst. Sci..

[150]  R. Pelrine Diamagnetic levitation: A technique for suspending objects is just now finding practical application , 2004 .

[151]  Carl N. Nett,et al.  Control oriented system identification: a worst-case/deterministic approach in H/sub infinity / , 1991 .

[152]  H.-k. Chiang,et al.  Integral variable-structure grey control for magnetic levitation system , 2006 .

[153]  Jin-Hua She,et al.  Analysis and design of control system with equivalent-input-disturbance estimation , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[154]  Mohamed Zribi,et al.  Sliding mode control of a magnetic levitation system , 2004, Mathematical Problems in Engineering.

[155]  I. Horowitz,et al.  Optimum synthesis of non-minimum phase feedback systems with plant uncertainty† , 1978 .

[156]  G. Zames Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses , 1981 .

[157]  James S. Meditch,et al.  Stochastic Optimal Linear Estimation and Control , 1969 .

[158]  A. Binnie Using the History of Electricity and Magnetism to Enhance Teaching , 2001 .

[159]  I. Busch-Vishniac,et al.  An automated loading and unloading system for a maglev wafer transport path , 1993 .

[160]  F. C. Nelson,et al.  Rotodynamic Modeling of an Actively Controlled Magnetic Bearing Gas Turbine Engine , 1998 .

[161]  Tadahiko Shinshi,et al.  Magnetically Suspended Centrifugal Blood Pump With a Radial Magnetic Driver , 2005, ASAIO journal.

[162]  James Patrick Lyons,et al.  Integration of Magnetic Bearings in the Design of Advanced Gas Turbine Engines , 1994 .

[163]  R. Curtain,et al.  Realisation and approximation of linear infinite-dimensional systems with error bounds , 1988 .

[164]  Yuandan Lin,et al.  A universal formula for stabilization with bounded controls , 1991 .

[165]  J. Alvarez-Gallegos,et al.  Dynamical Sliding Mode Control of a MagLev System with 3 DOFs: Experimental Results , 2007, 2007 4th International Conference on Electrical and Electronics Engineering.

[166]  Eduardo Sontag A universal construction of Artstein's theorem on nonlinear stabilization , 1989 .

[167]  R. F. Post Inductrack demonstration model , 1998 .

[168]  M. Ono,et al.  Japan's superconducting Maglev train , 2002 .

[169]  M Kameneva,et al.  The Heartmate III: design and in vivo studies of a maglev centrifugal left ventricular assist device. , 2001, Artificial organs.

[170]  Daniel A. Tichenor,et al.  Wafer and reticle positioning system for the extreme ultraviolet lithography engineering test stand , 2000, Advanced Lithography.

[171]  Howard Kaufman,et al.  Direct adaptive control algorithms: theory and applications , 1993, Choice Reviews Online.

[172]  コラティール,バラ,et al.  Gas turbine engine sump pressurization system , 2013 .

[173]  Yoon Su Baek,et al.  Magnetically-Levitated Steel-Plate Conveyance System Using Electromagnets and a Linear Induction Motor , 2008, IEEE Transactions on Magnetics.

[174]  H. Ohsaki,et al.  Six-Degree-of-Freedom Motion Analysis of a Planar Actuator With a Magnetically Levitated Mover by Six-Phase Current Controls , 2008, IEEE Transactions on Magnetics.

[175]  Ronald M. Hirschorn,et al.  Control of nonlinear systems with friction , 1999, IEEE Trans. Control. Syst. Technol..

[176]  Scott A. Green,et al.  Robust, Digital, Nonlinear Control of Magnetic-Levitation Systems , 1998 .

[177]  Colin P. Britcher,et al.  Aerodynamics of Urban Maglev vehicles , 2012 .

[178]  Vukan R Vuchic,et al.  AN EVALUATION OF MAGLEV TECHNOLOGY AND ITS COMPARISON WITH HIGH SPEED RAIL , 2002 .

[179]  Y. Q. Chen,et al.  Using Fractional Order Adjustment Rules and Fractional Order Reference Models in Model-Reference Adaptive Control , 2002 .

[180]  P. Khargonekar,et al.  Linear and nonlinear algorithms for identification in H∞ with error bounds , 1991, 1991 American Control Conference.

[181]  Vadim I. Utkin,et al.  Sliding Modes and their Application in Variable Structure Systems , 1978 .

[182]  C. Hang,et al.  Refinements of the Ziegler-Nichols tuning formula , 1991 .

[183]  K. Nagaya,et al.  A noncontact permanent magnet levitation table with electromagnetic control and its vibration isolation method using direct disturbance cancellation combining optimal regulators , 1995 .

[184]  John R. Brauer Magnetic Actuators and Sensors , 2006 .

[185]  D. M. Rote,et al.  A review of dynamic stability of repulsive-force maglev suspension systems , 1998 .

[186]  L.A. Sievers,et al.  Comparison of two LQG-based methods for disturbance rejection , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[187]  R. Takahata,et al.  A 0.5 kWh flywheel energy storage system using a high-T/sub c/ superconducting magnetic bearing , 1999, IEEE Transactions on Applied Superconductivity.

[188]  Bojan Štumberger,et al.  Passive magnetic bearing , 2004 .

[189]  João Pedro Hespanha,et al.  Linear Systems Theory , 2009 .

[190]  G. Zames,et al.  Feedback, minimax sensitivity, and optimal robustness , 1983 .

[191]  Jon H. Davis Kalman-Bucy Filters , 2002 .

[192]  Y. Ishikawa Optimal Control Problem Associated with Jump Processes , 2004 .

[193]  D. Mayne Nonlinear and Adaptive Control Design [Book Review] , 1996, IEEE Transactions on Automatic Control.

[194]  David L. Trumper,et al.  Magnetic suspension techniques for precision motion control , 1990 .

[195]  M. Takasaki,et al.  Vibration isolation system combining zero-power magnetic suspension with springs , 2007 .

[196]  Wen-Hua Chen,et al.  Automatic loop-shaping in QFT using genetic algorithms , 1998 .

[197]  Gregor Huhn,et al.  Design and Development of the Transrapid TR09 , 2006 .

[198]  J. Slotine,et al.  Robust input-output feedback linearization , 1993 .

[199]  Alvarez-Ramírez,et al.  Control of systems with friction. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[200]  J. Apkarian,et al.  Nonlinear control design for a high-precision contactless positioning system using magnetic levitation , 2005, Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005..

[201]  J. J. Carroll,et al.  Adaptive control of active magnetic bearings under unknown static load change and unbalance , 1996, Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro.

[202]  H. Katayama,et al.  Tracking control of a magnetic levitation system by feedback linearization , 2004, SICE 2004 Annual Conference.

[203]  P. Studer A practical magnetic bearing , 1977 .

[204]  Heinz Unbehauen,et al.  Review and Future of Adaptive Control Systems , 1991 .

[205]  K.H. Lundberg,et al.  Low-cost magnetic levitation project kits , 2004, IEEE Control Systems.

[207]  Paul J. Werbos,et al.  Neural networks for control and system identification , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[208]  E. Yaz,et al.  Linear optimal control, H2 and H∞ methods, by Jeffrey B. Burl, Addison Wesley Longman, Inc. Menlo Park, CA, 1999 , 2000 .

[209]  George W. Irwin,et al.  Direct neural model reference adaptive control , 1995 .

[210]  Kazuto Seto,et al.  Coupled Building Control Using Acceleration Feedback , 2003 .

[211]  Roger Ford,et al.  Wafer handling with levitation , 1992 .

[212]  Kar-Keung D. Young Controller Design for a Manipulator Using Theory of Variable Structure Systems , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[213]  S. V. Emel’yanov Theory of variable-structure control systems: Inception and initial development , 2007 .

[214]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[215]  R. D. Thornton Flying low with Maglev , 1973, IEEE Spectrum.

[217]  An-Chyau Huang,et al.  Adaptive control of horizontal magnetic levitation system subject to external disturbances , 2012, 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA).

[218]  Jed Ludlow,et al.  A magnetic suspension theory and its application to the HeartQuest ventricular assist device. , 2002, Artificial organs.

[219]  Michio Takahashi,et al.  Marketing Strategy of the HSST System , 2006 .

[220]  Mario Sznaier,et al.  Robust Systems Theory and Applications , 1998 .

[221]  R.D. Lorenz,et al.  Design principles and implementation of acceleration feedback to improve performance of DC drives , 1990, Conference Record of the 1990 IEEE Industry Applications Society Annual Meeting.

[222]  Chia-Hsiang Menq,et al.  Precision motion control of a magnetic suspension actuator using a robust nonlinear compensation scheme , 1997 .

[223]  Eric H. Maslen,et al.  Self–Sensing Magnetic Bearings , 2009 .

[224]  Kevin C. Craig,et al.  Teaching control system design through mechatronics: academic and industrial perspectives , 2002 .

[225]  F. Holmes Axial Magnetic Suspensions , 1937 .

[226]  I. D. Landau,et al.  A survey of model reference adaptive techniques - Theory and applications , 1973, Autom..

[227]  Oskar von Stryk,et al.  Direct and indirect methods for trajectory optimization , 1992, Ann. Oper. Res..

[228]  Huang Lin,et al.  Root locations of an entire polytope of polynomials: It suffices to check the edges , 1987, 1987 American Control Conference.

[229]  YangQuan Chen,et al.  Linear Feedback Control: Analysis and Design with MATLAB , 2008 .

[230]  Jennifer Urner Quantitative Feedback Design Of Linear And Nonlinear Control Systems , 2016 .

[231]  W. Chu,et al.  Design of superconducting magnetic bearings with high levitating force for flywheel energy storage systems , 1995, IEEE Transactions on Applied Superconductivity.

[232]  Ahmed El Hajjaji,et al.  Modeling and nonlinear control of magnetic levitation systems , 2001, IEEE Trans. Ind. Electron..

[233]  Pierre Naslin The dynamics of linear and non-linear systems , 1965 .

[234]  Carl R. Knospe,et al.  Feedback linearization of an active magnetic bearing with voltage control , 2002, IEEE Trans. Control. Syst. Technol..

[235]  B. Peeters,et al.  Stochastic System Identification for Operational Modal Analysis: A Review , 2001 .

[236]  Mark L. Nagurka EMS Maglev vehicle-guideway-controller model , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[237]  V. Utkin Variable structure systems with sliding modes , 1977 .

[238]  Damrongrit Piyabongkarn,et al.  Magnetic levitation hardware-in-the-loop and MATLAB-based experiments for reinforcement of neural network control concepts , 2004, IEEE Transactions on Education.

[239]  B. Barmish New tools for robustness analysis , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[240]  Yan Luguang ON THE DEVELOPMENT STRATEGY OF THE HIGH-SPEED MAGLEV IN CHINA , 2002 .

[241]  Keith Glover,et al.  A loop-shaping design procedure using H/sub infinity / synthesis , 1992 .

[242]  Thomas B. Jones,et al.  Simple theory for the Levitron , 1997 .

[243]  C.R. Knospe,et al.  Feedback linearization of active magnetic bearings: current-mode implementation , 2005, IEEE/ASME Transactions on Mechatronics.

[244]  A. M. Khafe,et al.  Electromagnetic levitator , 2012, 2012 International Conference on Computer and Communication Engineering (ICCCE).

[245]  L. Ghaoui,et al.  A cone complementarity linearization algorithm for static output-feedback and related problems , 1996, Proceedings of Joint Conference on Control Applications Intelligent Control and Computer Aided Control System Design.

[246]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[247]  David L. Trumper,et al.  Magnetic suspension and vibration control of beams for non-contact processing , 1999, Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328).

[248]  Nelson J. Groom,et al.  Design Formulas for Permanent-Magnet Bearings , 2003 .

[249]  D. Magill Optimal adaptive estimation of sampled stochastic processes , 1965 .

[250]  Carl R. Knospe,et al.  Gain-scheduled control of a magnetic bearing with low bias flux , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[251]  Zi-Jiang Yang,et al.  Adaptive robust output feedback control of a magnetic levitation system by k-filter approach , 2004, Proceedings of the 2004 IEEE International Symposium on Intelligent Control, 2004..

[252]  P. Holmer Faster than a speeding bullet train , 2003 .

[253]  Donghai Li,et al.  PID controller design for a class of distributed parameter systems , 2011, Proceedings of the 30th Chinese Control Conference.

[254]  M. V. Berry,et al.  The LevitronTM: an adiabatic trap for spins , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[255]  J.W. Kolar,et al.  Combined Radial-Axial Magnetic Bearing for a 1 kW, 500,000 rpm Permanent Magnet Machine , 2007, APEC 07 - Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition.

[256]  Chih-Chiang Cheng,et al.  A decentralized model reference adaptive variable structure controller for large-scale time-varying delay systems , 2003, IEEE Trans. Autom. Control..

[257]  Masato Murakami,et al.  Application of superconducting magnetic bearings to a 10 kWh-class flywheel energy storage system , 2005 .

[258]  Jeffrey Hillyard,et al.  Magnetic Bearings , 2006 .

[259]  Alexandre N. Pechev,et al.  Nonlinear H∞ controllers for electromagnetic suspension systems , 2004, IEEE Trans. Autom. Control..

[260]  A. Isidori,et al.  Adaptive control of linearizable systems , 1989 .

[261]  Changjiu Zhou,et al.  Model reference adaptive robust fuzzy control for ship steering autopilot with uncertain nonlinear systems , 2003, Appl. Soft Comput..

[262]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[263]  J. Caulkins,et al.  Optimal Control of Nonlinear Processes: With Applications in Drugs, Corruption, and Terror , 2008 .

[264]  Валерий Туркубеевич Пчентлешев Gas-turbine engine , 1993 .

[265]  Ademola Abdulkareem,et al.  An Undergraduate Control Tutorial on Root Locus-Based Magnetic Levitation System Stabilization , 2013 .

[266]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[267]  Zhu Changsheng,et al.  A PWM Based Switching Power Amplifier for Active Magnetic Bearings , 2005, 2005 International Conference on Electrical Machines and Systems.

[268]  Dennis S. Bernstein,et al.  Robust stability and performance analysis for linear dynamic systems , 1989 .

[269]  Darren M. Dawson,et al.  Nonlinear control of active magnetic bearings: a backstepping approach , 1996, IEEE Trans. Control. Syst. Technol..

[270]  Yigang Wang,et al.  Modeling and control of a magnetic bearing system , 2010, Proceedings of the 2010 American Control Conference.

[271]  Michel Lacour,et al.  A new method of cutting force measurement based on command voltages of active electro-magnetic bearings , 2004 .

[272]  Donald E. Kirk,et al.  Optimal control theory : an introduction , 1970 .

[273]  H. Habermann,et al.  An active magnetic bearing system , 1980 .

[274]  D. Bernstein,et al.  The optimal projection equations for fixed-order dynamic compensation , 1984 .

[275]  Luis Amezquita-Brooks,et al.  Nonlinear Control of a Magnetic Levitation System , 2009, 2009 Electronics, Robotics and Automotive Mechanics Conference (CERMA).

[276]  Ju Lee,et al.  Review of maglev train technologies , 2006 .

[277]  Masao Tanaka,et al.  THE FIRST HSST MAGLEV COMMERCIAL TRAIN IN JAPAN , 2005 .

[278]  Reinhold Meisinger,et al.  Modeling and Simulation of Shanghai MAGLEV Train Transrapid with Random Track Irregularities , 2007 .

[279]  A.G.J. Macfarlane,et al.  Return-difference matrix properties for optimal stationary Kalman-Bucy filter , 1971 .

[280]  Tsu-Chin Tsao,et al.  High-Sampling Rate Dynamic Inversion—Filter Realization and Applications in Digital Control , 2014, IEEE/ASME Transactions on Mechatronics.

[281]  Zi-Jiang Yang,et al.  Adaptive robust nonlinear control of a magnetic levitation system , 2001, Autom..

[282]  D. Atherton,et al.  Some Results on Control Systems with Mixed Perturbations , 2002 .

[283]  D. Ryutov,et al.  The Inductrack: a simpler approach to magnetic levitation , 2000, IEEE Transactions on Applied Superconductivity.

[284]  Roger M. Goodall,et al.  Generalised Design Models For EMS Maglev , 2008 .

[285]  P. Khargonekar,et al.  Approximation of infinite-dimensional systems , 1989 .

[286]  Y. Hori,et al.  Disturbance suppression on an acceleration control type DC servo system , 1988, PESC '88 Record., 19th Annual IEEE Power Electronics Specialists Conference.

[287]  Hirokazu Nishitani,et al.  Robust adaptive control of nonlinear systems with convex input constraints: Case study on the magnetic levitation system , 2009, 2009 ICCAS-SICE.