Evolution of Collective Behaviors for a Real Swarm of Aquatic Surface Robots

Swarm robotics is a promising approach for the coordination of large numbers of robots. While previous studies have shown that evolutionary robotics techniques can be applied to obtain robust and efficient self-organized behaviors for robot swarms, most studies have been conducted in simulation, and the few that have been conducted on real robots have been confined to laboratory environments. In this paper, we demonstrate for the first time a swarm robotics system with evolved control successfully operating in a real and uncontrolled environment. We evolve neural network-based controllers in simulation for canonical swarm robotics tasks, namely homing, dispersion, clustering, and monitoring. We then assess the performance of the controllers on a real swarm of up to ten aquatic surface robots. Our results show that the evolved controllers transfer successfully to real robots and achieve a performance similar to the performance obtained in simulation. We validate that the evolved controllers display key properties of swarm intelligence-based control, namely scalability, flexibility, and robustness on the real swarm. We conclude with a proof-of-concept experiment in which the swarm performs a complete environmental monitoring task by combining multiple evolved controllers.

[1]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[2]  Dario Floreano,et al.  Evolved swarming without positioning information: an application in aerial communication relay , 2009, Auton. Robots.

[3]  Risto Miikkulainen,et al.  Incremental Evolution of Complex General Behavior , 1997, Adapt. Behav..

[4]  Anders Lyhne Christensen,et al.  Hybrid Control for a Real Swarm Robotics System in an Intruder Detection Task , 2016, EvoApplications.

[5]  Vijay Kumar,et al.  Construction with quadrotor teams , 2012, Auton. Robots.

[6]  Stefano Nolfi,et al.  Evolutionary Robotics: Exploiting the Full Power of Self-organization , 1998, Connect. Sci..

[7]  P.J.S. Gonçalves,et al.  Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions , 2009 .

[8]  Marco Dorigo,et al.  Self-Organized Coordinated Motion in Groups of Physically Connected Robots , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[9]  Hongyan Wang,et al.  Social potential fields: A distributed behavioral control for autonomous robots , 1995, Robotics Auton. Syst..

[10]  Wei-Po Lee,et al.  Evolving Complex Robot Behaviors , 1999, Inf. Sci..

[11]  V. Isaeva Self-organization in biological systems , 2012, Biology Bulletin.

[12]  Anders Lyhne Christensen,et al.  Evolution of swarm robotics systems with novelty search , 2013, Swarm Intelligence.

[13]  Anders Lyhne Christensen,et al.  Novelty-Driven Cooperative Coevolution , 2017, Evolutionary Computation.

[14]  Phil Husbands,et al.  Evolutionary robotics , 2014, Evolutionary Intelligence.

[15]  Mauro Birattari,et al.  Fault detection in autonomous robots based on fault injection and learning , 2008, Auton. Robots.

[16]  Gregory J. Barlow,et al.  Article in Press Robotics and Autonomous Systems ( ) – Robotics and Autonomous Systems Fitness Functions in Evolutionary Robotics: a Survey and Analysis , 2022 .

[17]  Marco Dorigo,et al.  Incremental Evolution of Robot Controllers for a Highly Integrated Task , 2006, SAB.

[18]  Luca Maria Gambardella,et al.  c ○ 2004 Kluwer Academic Publishers. Manufactured in The Netherlands. Swarm-Bot: A New Distributed Robotic Concept , 2022 .

[19]  Anders Lyhne Christensen,et al.  Speeding Up Online Evolution of Robotic Controllers with Macro-neurons , 2014, EvoApplications.

[20]  Antoine Cully,et al.  Robots that can adapt like animals , 2014, Nature.

[21]  J.E. Manley,et al.  Unmanned surface vehicles, 15 years of development , 2008, OCEANS 2008.

[22]  Stefano Nolfi,et al.  Evolving Mobile Robots Able to Display Collective Behaviors , 2003, Artificial Life.

[23]  Nick Jakobi,et al.  Evolutionary Robotics and the Radical Envelope-of-Noise Hypothesis , 1997, Adapt. Behav..

[24]  G. Packard,et al.  Observing arctic coastal hydrography using the REMUS AUV , 2008, 2008 IEEE/OES Autonomous Underwater Vehicles.

[25]  Jeffrey L. Krichmar,et al.  Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines , 2001, Complex..

[26]  Israel A. Wagner,et al.  Distributed covering by ant-robots using evaporating traces , 1999, IEEE Trans. Robotics Autom..

[27]  Hugh F. Durrant-Whyte,et al.  Recursive Bayesian search-and-tracking using coordinated uavs for lost targets , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[28]  Anders Lyhne Christensen,et al.  R-HybrID: Evolution of Agent Controllers with a Hybrisation of Indirect and Direct Encodings , 2015, AAMAS.

[29]  Kenneth O. Stanley,et al.  A novel human-computer collaboration: combining novelty search with interactive evolution , 2014, GECCO.

[30]  Daniel Serrano,et al.  The EU-ICARUS project: Developing assistive robotic tools for search and rescue operations , 2013, 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR).

[31]  Francesco Mondada,et al.  The e-puck, a Robot Designed for Education in Engineering , 2009 .

[32]  Erol Sahin,et al.  Swarm Robotics: From Sources of Inspiration to Domains of Application , 2004, Swarm Robotics.

[33]  Anders Lyhne Christensen,et al.  Avoiding convergence in cooperative coevolution with novelty search , 2014, AAMAS.

[34]  D. Clegg,et al.  User Operational Evaluation System of Unmanned Underwater Vehicles for very Shallow Water Mine Countermeasures , 2003, Oceans 2003. Celebrating the Past ... Teaming Toward the Future (IEEE Cat. No.03CH37492).

[35]  Michael L. Stein,et al.  Interpolation of spatial data , 1999 .

[36]  Francesco Mondada,et al.  Automatic creation of an autonomous agent: genetic evolution of a neural-network driven robot , 1994 .

[37]  Anders Lyhne Christensen,et al.  JBotEvolver: A versatile simulation platform for evolutionary robotics , 2014 .

[38]  Marco Dorigo,et al.  Evolution of Solitary and Group Transport Behaviors for Autonomous Robots Capable of Self-Assembling , 2008, Adapt. Behav..

[39]  Christopher M. Clark,et al.  Archaeology via underwater robots: Mapping and localization within maltese cistern systems , 2008, 2008 10th International Conference on Control, Automation, Robotics and Vision.

[40]  Anders Lyhne Christensen,et al.  odNEAT: An Algorithm for Decentralised Online Evolution of Robotic Controllers , 2015, Evolutionary Computation.

[41]  Levent Bayındır,et al.  A review of swarm robotics tasks , 2016, Neurocomputing.

[42]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[43]  A. E. Eiben,et al.  Evolutionary Robotics: What, Why, and Where to , 2015, Front. Robot. AI.

[44]  Erol Sahin,et al.  Evolving aggregation behaviors for swarm robotic systems: a systematic case study , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[45]  Anders Lyhne Christensen,et al.  The Case for Engineering the Evolution of Robot Controllers , 2014, ALIFE.

[46]  Josh C. Bongard,et al.  Avoiding local optima with interactive evolutionary robotics , 2012, GECCO '12.

[47]  Marco Dorigo,et al.  Evolving Aggregation Behaviors in a Swarm of Robots , 2003, ECAL.

[48]  Lino Marques,et al.  Particle swarm-based olfactory guided search , 2006, Auton. Robots.

[49]  Erol Şahin,et al.  A review of studies in swarm robotics , 2007 .

[50]  Francesco Mondada,et al.  Evolution of homing navigation in a real mobile robot , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[51]  Marco Dorigo,et al.  Evolution of Signaling in a Multi-Robot System: Categorization and Communication , 2008, Adapt. Behav..

[52]  Luis Mateus Rocha,et al.  Evolving an Integrated Phototaxis and Hole-avoidance Behavior for a Swarm-bot , 2006 .

[53]  Giovanni Pini,et al.  On the design of neuro-controllers for individual and social learning behaviour in autonomous robots: an evolutionary approach , 2008, Connect. Sci..

[54]  Phil Husbands,et al.  Towards the evolution of an artificial homeostatic system , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[55]  Marco Dorigo,et al.  Towards group transport by swarms of robots , 2009, Int. J. Bio Inspired Comput..

[56]  Stéphane Doncieux,et al.  Incremental Evolution of Animats' Behaviors as a Multi-objective Optimization , 2008, SAB.

[57]  Marco Dorigo,et al.  Cooperative hole avoidance in a swarm-bot , 2006, Robotics Auton. Syst..

[58]  Erol Şahin,et al.  Aggregation in Swarm Robotic Systems: Evolution and Probabilistic Control , 2007 .

[59]  G. K. Davis,et al.  Genome Sequence of the Pea Aphid Acyrthosiphon pisum , 2010, PLoS biology.

[60]  Tomasz Praczyk,et al.  Using augmenting modular neural networks to evolve neuro-controllers for a team of underwater vehicles , 2014, Soft Comput..

[61]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[62]  Jordan B. Pollack,et al.  Automatic design and manufacture of robotic lifeforms , 2000, Nature.

[63]  Stefano Nolfi,et al.  Evolving Mobile Robots in Simulated and Real Environments , 1995, Artificial Life.

[64]  Gaurav S. Sukhatme,et al.  Spreading Out: A Local Approach to Multi-robot Coverage , 2002, DARS.

[65]  Mauro Birattari,et al.  An Experiment in Automatic Design of Robot Swarms - AutoMoDe-Vanilla, EvoStick, and Human Experts , 2014, ANTS Conference.

[66]  Anders Lyhne Christensen,et al.  odNEAT: An Algorithm for Distributed Online, Onboard Evolution of Robot Behaviours , 2012, ALIFE.

[67]  Anders Lyhne Christensen,et al.  Hybrid Control for Large Swarms of Aquatic Drones , 2014, ALIFE.

[68]  Sujal M. Shah,et al.  A hardware digital fuzzy inference engine using standard integrated circuits , 1994 .

[69]  D. Floreano,et al.  Evolution of Adaptive Behaviour in Robots by Means of Darwinian Selection , 2010, PLoS biology.

[70]  Francesco Mondada,et al.  The Development of Khepera , 1999 .

[71]  Stefano Nolfi,et al.  Engineering the Evolution of Self-Organizing Behaviors in Swarm Robotics: A Case Study , 2011, Artificial Life.

[72]  Philip K. McKinley,et al.  Evolution of station keeping as a response to flows in an aquatic robot , 2013, GECCO '13.

[73]  Antonella Ferrara,et al.  AMADEUS: advanced manipulation for deep underwater sampling , 1997, IEEE Robotics Autom. Mag..

[74]  Stefano Nolfi,et al.  Evolving coordinated group behaviours through maximisation of mean mutual information , 2008, Swarm Intelligence.

[75]  A. E. Eiben,et al.  Racing to improve on-line, on-board evolutionary robotics , 2011, GECCO '11.

[76]  Josh C. Bongard,et al.  Avoiding local optima with user demonstrations and low-level control , 2013, 2013 IEEE Congress on Evolutionary Computation.

[77]  Serge Kernbach,et al.  CoCoRo -- The Self-Aware Underwater Swarm , 2011, 2011 Fifth IEEE Conference on Self-Adaptive and Self-Organizing Systems Workshops.

[78]  Stéphane Doncieux,et al.  Encouraging Behavioral Diversity in Evolutionary Robotics: An Empirical Study , 2012, Evolutionary Computation.

[79]  Stefano Nolfi,et al.  Self-organised path formation in a swarm of robots , 2011, Swarm Intelligence.

[80]  Dario Floreano,et al.  Audio-based localization for swarms of micro air vehicles , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[81]  Anders Lyhne Christensen,et al.  Open Issues in Evolutionary Robotics , 2016, Evolutionary Computation.

[82]  Eliseo Ferrante,et al.  Swarm robotics: a review from the swarm engineering perspective , 2013, Swarm Intelligence.

[83]  Eliseo Ferrante,et al.  Swarmanoid: A Novel Concept for the Study of Heterogeneous Robotic Swarms , 2013, IEEE Robotics & Automation Magazine.

[84]  Anders Lyhne Christensen,et al.  To err is robotic, to tolerate immunological: fault detection in multirobot systems. , 2015, Bioinspiration & biomimetics.

[85]  Belkacem Khaldi,et al.  An Overview of Swarm Robotics: Swarm Intelligence Applied to Multi-robotics , 2015 .

[86]  Kenneth O. Stanley,et al.  Abandoning Objectives: Evolution Through the Search for Novelty Alone , 2011, Evolutionary Computation.

[87]  Anders Lyhne Christensen,et al.  Generic behaviour similarity measures for evolutionary swarm robotics , 2013, GECCO '13.

[88]  Anders Lyhne Christensen,et al.  Evolution of Hybrid Robotic Controllers for Complex Tasks , 2015, J. Intell. Robotic Syst..

[89]  José Barata,et al.  An autonomous surface-aerial marsupial robotic team for riverine environmental monitoring: Benefiting from coordinated aerial, underwater, and surface level perception , 2014, 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014).

[90]  Stéphane Doncieux,et al.  Beyond black-box optimization: a review of selective pressures for evolutionary robotics , 2014, Evol. Intell..

[91]  Maja J. Matarić,et al.  Behavior-Based Coordination in Multi-Robot Systems , 2018, Autonomous Mobile Robots.

[92]  Luca Maria Gambardella,et al.  Evolving Self-Organizing Behaviors for a Swarm-Bot , 2004, Auton. Robots.

[93]  Frank L. Lewis,et al.  Autonomous Mobile Robots : Sensing, Control, Decision Making and Applications , 2006 .

[94]  Prasanna Velagapudi,et al.  Real-world testing of a multi-robot team , 2012, AAMAS.

[95]  C. Lee Giles,et al.  An analysis of noise in recurrent neural networks: convergence and generalization , 1996, IEEE Trans. Neural Networks.

[96]  Ulrich Rückert,et al.  Experiments with the Mini-Robot Khepera , 1999 .

[97]  Shuo Pang,et al.  Development and missions of unmanned surface vehicle , 2010 .

[98]  Anders Lyhne Christensen,et al.  Evolution of Hierarchical Controllers for Multirobot Systems , 2014, ALIFE.

[99]  Stéphane Doncieux,et al.  The Transferability Approach: Crossing the Reality Gap in Evolutionary Robotics , 2013, IEEE Transactions on Evolutionary Computation.

[100]  Joel Lehman,et al.  Encouraging reactivity to create robust machines , 2013, Adapt. Behav..