The Configuration Space Method for Kinematic Design of Mechanisms

This book presents the configuration space method for computer-aided design of mechanisms with changing part contacts. Configuration space is a complete and compact geometric representation of part motions and part interactions that supports the core mechanism design tasks of analysis, synthesis, and tolerancing. It is the first general algorithmic treatment of the kinematics of higher pairs with changing contacts. It will help designers detect and correct design flaws and unexpected kinematic behaviors, as demonstrated in the book's four case studies taken from industry. After presenting the configuration space framework and algorithms for mechanism kinematics, the authors describe algorithms for kinematic analysis, tolerancing, and synthesis based on configuration spaces. The case studies follow, illustrating the application of the configuration space method to the analysis and design of automotive, micro-mechanical, and optical mechanisms. Appendixes offer a catalog of higher-pair mechanisms and a description of HIPAIR, an open source C++ mechanical design system that implements some of the configuration space methods described in the book, including configuration space visualization and kinematic simulation. HIPAIR comes with an interactive graphical user interface and many sample mechanism input files. The Configuration Space Method for Kinematic Design of Mechanisms will be a valuable resource for students, researchers, and engineers in mechanical engineering, computer science, and robotics.

[1]  L. Joskowicz,et al.  Computational Kinematic Analysis of Higher Pairs with Multiple Contacts , 1995 .

[2]  Leo Joskowicz Simplification and Abstraction of Kinematic Behaviors , 1989, IJCAI.

[3]  Leo Joskowicz Reasoning about the kinematics of mechanical devices , 1989, Artif. Intell. Eng..

[4]  Leo Josk wicz From Kinematics to Shape : An Approach to Innovative Design , .

[5]  G. Swaminathan Robot Motion Planning , 2006 .

[6]  Rajan Ramaswamy Computer tools for preliminary parametric design , 1993 .

[7]  Jensen,et al.  Classical and Modern Mechanisms for Engineers and Inventors , 1991 .

[8]  Randy C. Brost,et al.  Computing metric and topological properties of configuration-space obstacles , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[9]  J. Michael McCarthy,et al.  Introduction to theoretical kinematics , 1990 .

[10]  Pierre Bourdet,et al.  Geometric Product Specification and Verification: Integration of Functionality , 2003 .

[11]  Russell H. Taylor,et al.  Interference-Free Insertion of a Solid Body Into a Cavity: An Algorithm and a Medical Application , 1996, Int. J. Robotics Res..

[12]  Leo Joskowicz,et al.  A representation language for mechanical behavior , 1996, Artif. Intell. Eng..

[13]  Gary L. Kinzel,et al.  A numerical method for the kinematic analysis of planar higher pairs in rolling contact , 1985 .

[14]  Joseph Edward Shigley,et al.  Mechanical engineering design , 1972 .

[15]  Elisha Sacks,et al.  Nonlinear kinematic tolerance analysis of planar mechanical systems , 2003, Comput. Aided Des..

[16]  Leo Joskowicz,et al.  Kinematic tolerance analysis , 1995, Comput. Aided Des..

[17]  Chandrajit L. Bajaj,et al.  Generation of configuration space obstacles: The case of moving algebraic curves , 2005, Algorithmica.

[18]  Bruce Randall Donald,et al.  A Search Algorithm for Motion Planning with Six Degrees of Freedom , 1987, Artif. Intell..

[19]  Boi Faltings Qualitative Kinematics in Mechanisms , 1987, IJCAI.

[20]  Daniel E. Whitney,et al.  Representation of geometric variations using matrix transforms for statistical tolerance analysis in assemblies , 1994 .

[21]  Leo Joskowicz,et al.  Computer-assisted Kinematic Tolerance Analysis of a Gear Selector Mechanism with the Configuration Space Method , 1999 .

[22]  Matthew T. Mason,et al.  Mechanics of Robotic Manipulation , 2001 .

[23]  Sanjay G. Dhande,et al.  Kinematic analysis of planar higher pair mechanisms , 1978 .

[24]  Pierre Bourdet,et al.  A Computation Method for the Consequences of Geometric Errors in Mechanisms , 1998 .

[25]  K. H. Hunt,et al.  Kinematic geometry of mechanisms , 1978 .

[26]  James R. Rinderle,et al.  A synthesis strategy for mechanical devices , 1989 .

[27]  Chung-lun Li,et al.  A configuration space approach to the automatic design of multiple-state mechanical devices , 1999, Comput. Aided Des..

[28]  E. J. Haug,et al.  Computer aided kinematics and dynamics of mechanical systems. Vol. 1: basic methods , 1989 .

[29]  Leo Joskowicz,et al.  Towards robust kinematic synthesis of mechanical systems , 2003 .

[30]  S M Barnes,et al.  Computer-Aided Kinematic Design of a Torsional Ratcheting Actuator , 2001 .

[31]  Elisha Sacks,et al.  Practical Sliced Configuration Spaces for Curved Planar Pairs , 1999, Int. J. Robotics Res..

[32]  Leo Joskowicz,et al.  Kinematic synthesis , 2001 .

[33]  Leo Joskowicz,et al.  Kinematic analysis of spatial fixed-axis higher pairs using configuration spaces , 2003, Comput. Aided Des..

[34]  Ferdinand Freudenstein,et al.  Kinematic Synthesis of Linkages , 1965 .

[35]  Shean Juinn Chiou,et al.  Design representation and computational synthesis of mechanical motions , 1992 .

[36]  Umberto Prisco,et al.  Overview of current CAT systems , 2002, Integr. Comput. Aided Eng..

[37]  Dinesh Manocha,et al.  Collision Detection: Algorithms and Applications , 1996 .

[38]  Kenneth Y. Goldberg,et al.  A Complete Algorithm for Fixture Loading , 1998, Int. J. Robotics Res..

[39]  Werner Schiehlen,et al.  Multibody Systems Handbook , 2012 .

[40]  Leo Joskowicz,et al.  Parametric kinematic tolerance analysis of planar mechanisms , 1997, Comput. Aided Des..

[41]  Javier García de Jalón,et al.  Kinematic and Dynamic Simulation of Multibody Systems , 1994 .

[42]  Leo Joskowicz Mechanism comparison and classification for design , 1990 .

[43]  Elisha Sacks,et al.  Robust parameter synthesis for planar higher pair mechanical systems , 2006, Comput. Aided Des..

[44]  Lung-Wen Tsai,et al.  Mechanism Design: Enumeration of Kinematic Structures According to Function , 2001 .

[45]  Michael Caine The design of shape interactions using motion constraints , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[46]  Leo Joskowicz,et al.  Tolerance envelopes of planar mechanical parts with parametric tolerances , 2005, Comput. Aided Des..

[47]  Jorge Angeles,et al.  Optimization of cam mechanisms , 1991 .

[48]  Arthur G. Erdman,et al.  Modern kinematics : developments in the last forty years , 1993 .

[49]  Simon Parsons,et al.  Principles of Robot Motion: Theory, Algorithms and Implementations by Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun, 603 pp., $60.00, ISBN 0-262-033275 , 2007, The Knowledge Engineering Review.

[50]  E. R. Maki,et al.  The Creation of Mechanisms According to Kinematic Structure and Function , 1979 .

[51]  Leo Joskowicz,et al.  Parametric kinematic tolerance analysis of general planar systems , 1998, Comput. Aided Des..

[52]  Leo Joskowicz,et al.  Redesign of a Spatial Gear Pair Using Configuration Spaces , 2002, DAC 2002.

[53]  Kenneth Y. Goldberg,et al.  A complete algorithm for synthesizing modular fixtures for polygonal parts , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[54]  F. Litvin,et al.  Gear geometry and applied theory , 1994 .

[55]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[56]  Martti Mäntylä,et al.  Introduction to Solid Modeling , 1988 .

[57]  J. M. McCarthy The Kinematics of robot manipulators , 1987 .

[58]  Panos Y. Papalambros,et al.  Principles of Optimal Design: Author Index , 2000 .

[59]  Boi Faltings,et al.  A Symbolic Approach to Qualitative Kinematics , 1992, Artif. Intell..

[60]  Elisha Sacks,et al.  Parameter synthesis of higher kinematic pairs , 2003, Comput. Aided Des..

[61]  Elisha Sacks,et al.  Path planning for planar articulated robots using configuration spaces and compliant motion , 2003, IEEE Trans. Robotics Autom..