An overview of the configuration and manipulation of soft robotics for on-orbit servicing

Soft robots refer to robots that are softer and more flexible when compared with conventional rigid-bodied robots. Soft robots are adapted to unstructured environments due to their flexibility, deformability and energy-absorbing properties. Thus, they have tremendous application prospects in on-orbit servicing (OOS). This study discusses the configuration and manipulation of soft robotics. Usually, learning from living beings is used to develop the configurations of most soft robots. In this study, typical soft robots are introduced based on what they mimic. The discussion of manipulation is divided into two parts, namely actuation and control. The study also involves describing and comparing several types of actuations. Studies on the control of soft robots are also reviewed. In this study, potential application of soft robotics for on-orbit servicing is analyzed. A hybrid configuration and manipulation of space soft robots for future research are proposed based on the current development of soft robotics, and some challenges are discussed.

[1]  Jun Shintake,et al.  Functional Soft Robotic Actuators Based on Dielectric Elastomers , 2016 .

[2]  F. Carpi,et al.  Biomedical applications of electroactive polymer actuators , 2009 .

[3]  Ian D. Walker,et al.  Design and experimental testing of the OctArm soft robot manipulator , 2006, SPIE Defense + Commercial Sensing.

[4]  Robert J. Wood,et al.  Peristaltic locomotion with antagonistic actuators in soft robotics , 2010, 2010 IEEE International Conference on Robotics and Automation.

[5]  G. Whitesides,et al.  Pneumatic Networks for Soft Robotics that Actuate Rapidly , 2014 .

[6]  John D. Childs,et al.  A review of space robotics technologies for on-orbit servicing , 2015 .

[7]  M. Valvo,et al.  A Minimally Invasive Tendril Robot for In-Space Inspection , 2006, The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006..

[8]  Gang Xiao,et al.  A compressive tracking based on time-space Kalman fusion model , 2015, Science China Information Sciences.

[9]  Oliver Brock,et al.  A novel type of compliant and underactuated robotic hand for dexterous grasping , 2016, Int. J. Robotics Res..

[10]  L. Yahia,et al.  Medical applications of shape memory polymers , 2007, Biomedical materials.

[11]  Robert J. Wood,et al.  Micro artificial muscle fiber using NiTi spring for soft robotics , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[12]  B. Trimmer,et al.  Kinematics of horizontal and vertical caterpillar crawling , 2009, Journal of Experimental Biology.

[13]  S. Bauer,et al.  Self-organized minimum-energy structures for dielectric elastomer actuators , 2006 .

[14]  Stephen A. Morin,et al.  Using explosions to power a soft robot. , 2013, Angewandte Chemie.

[15]  Ian D. Walker,et al.  Large deflection dynamics and control for planar continuum robots , 2001 .

[16]  Cecilia Laschi,et al.  A feed-forward neural network learning the inverse kinetics of a soft cable-driven manipulator moving in three-dimensional space , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  Cecilia Laschi,et al.  A two dimensional inverse kinetics model of a cable driven manipulator inspired by the octopus arm , 2012, 2012 IEEE International Conference on Robotics and Automation.

[18]  B Mazzolai,et al.  Design of a biomimetic robotic octopus arm , 2009, Bioinspiration & biomimetics.

[19]  Heinrich M. Jaeger,et al.  Universal robotic gripper based on the jamming of granular material , 2010, Proceedings of the National Academy of Sciences.

[20]  Paolo Dario,et al.  Design and development of a soft robotic octopus arm exploiting embodied intelligence , 2012, 2012 IEEE International Conference on Robotics and Automation.

[21]  Huai-Ti Lin,et al.  GoQBot: a caterpillar-inspired soft-bodied rolling robot , 2011, Bioinspiration & biomimetics.

[22]  K. Oguro,et al.  CHALLENGES TO THE TRANSITION OF IPMC ARTIFICIAL MUSCLE ACTUATORS TO PRACTICAL APPLICATION , 1999 .

[23]  H. Tanaka,et al.  Applying a flexible microactuator to robotic mechanisms , 1992, IEEE Control Systems.

[24]  Haiyan Hu Kinematic Analysis and Simulation for Cable-driven Continuum Robot , 2010 .

[25]  Ian A. Gravagne,et al.  Manipulability, force, and compliance analysis for planar continuum manipulators , 2002, IEEE Trans. Robotics Autom..

[26]  Yanju Liu,et al.  Progress in constitutive theory and stability research of electroactive dielectric elastomers , 2015 .

[27]  J. Bruce C. Davies,et al.  Continuum robots - a state of the art , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[28]  D. Caleb Rucker,et al.  Parsimonious Evaluation of Concentric-Tube Continuum Robot Equilibrium Conformation , 2009, IEEE Transactions on Biomedical Engineering.

[29]  Christopher D. Rahn,et al.  Geometrically Exact Models for Soft Robotic Manipulators , 2008, IEEE Transactions on Robotics.

[30]  Yoseph Bar-Cohen,et al.  CAE approach in application of Nafion-Pt composite (ICPF) actuators: analysis for surface wipers of NASA MUSES-CN nanorovers , 2000, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[31]  Daniela Rus,et al.  Dynamics and trajectory optimization for a soft spatial fluidic elastomer manipulator , 2016, Int. J. Robotics Res..

[32]  Ian A. Gravagne,et al.  Uniform regulation of a multi-section continuum manipulator , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[33]  Rolf Pfeifer,et al.  How the body shapes the way we think - a new view on intelligence , 2006 .

[34]  Masayoshi Tomizuka,et al.  Robust motion controller design for high-accuracy positioning systems , 1996, IEEE Trans. Ind. Electron..

[35]  Elizabeth V. Mangan,et al.  Development of a peristaltic endoscope , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[36]  Yan Xin-rong A FLEXIBLE ROBOT HAND WITH EMBEDDED SMA ACTUATORS , 2002 .

[37]  Jason Rife,et al.  Modeling locomotion of a soft-bodied arthropod using inverse dynamics , 2011, Bioinspiration & biomimetics.

[38]  D. Floreano,et al.  Versatile Soft Grippers with Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators , 2016, Advanced materials.

[39]  Yoseph Bar-Cohen EAP History, Current Status, and Infrastructure , 2004 .

[40]  Ou Ma,et al.  Model order reduction for impact-contact dynamics simulations of flexible manipulators , 2007, Robotica.

[41]  M. Rosenthal,et al.  Chapter 9 – MULTIPLE-DEGREES-OF-FREEDOM ROLL ACTUATORS , 2008 .

[42]  S. Bauer,et al.  Energy minimization for self-organized structure formation and actuation , 2007 .

[43]  Masayoshi Tomizuka,et al.  Direct Joint Space State Estimation in Robots With Multiple Elastic Joints , 2014, IEEE/ASME Transactions on Mechatronics.

[44]  Giovanni B. Palmerini,et al.  Vibration control of a flexible space manipulator during on orbit operations , 2012 .

[45]  Cecilia Laschi,et al.  Soft robotics: a bioinspired evolution in robotics. , 2013, Trends in biotechnology.

[46]  I. Gavrilovich,et al.  Rollable Multisegment Dielectric Elastomer Minimum Energy Structures for a Deployable Microsatellite Gripper , 2015, IEEE/ASME Transactions on Mechatronics.

[47]  Di Guo,et al.  Object Recognition Using Tactile Measurements: Kernel Sparse Coding Methods , 2016, IEEE Transactions on Instrumentation and Measurement.

[48]  Todd A. Gisby,et al.  Multi-functional dielectric elastomer artificial muscles for soft and smart machines , 2012 .

[49]  Andreas Schulz,et al.  A Human-Like Robot Hand and Arm with Fluidic Muscles: Biologically Inspired Construction and Functionality , 2003, Embodied Artificial Intelligence.

[50]  John Kenneth Salisbury,et al.  Mechanics Modeling of Tendon-Driven Continuum Manipulators , 2008, IEEE Transactions on Robotics.

[51]  Yoseph Bar-Cohen,et al.  Flexible, Low-mass Robotic Arm Actuated by Electroactive Polymers and Operated Equivalently to Human Arm and Hand , 1998 .

[52]  Tamar Flash,et al.  Dynamic model of the octopus arm. I. Biomechanics of the octopus reaching movement. , 2005, Journal of neurophysiology.

[53]  Kai Xu,et al.  An Investigation of the Intrinsic Force Sensing Capabilities of Continuum Robots , 2008, IEEE Transactions on Robotics.

[54]  Yanyuan Qin,et al.  Current progress of information fusion in China , 2013 .

[55]  Byung-Ju Yi,et al.  Design of a spring backbone micro endoscope , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[56]  P LaroucheBenoit,et al.  Investigation of impedance controller for autonomous on-orbit servicing robot , 2013 .

[57]  P. Dario,et al.  Design concept and validation of a robotic arm inspired by the octopus , 2011 .

[58]  Gregory S. Chirikjian,et al.  Hyper-redundant manipulator dynamics: a continuum approximation , 1994, Adv. Robotics.

[59]  Tohru Suzuki,et al.  Results of the ETS-7 Mission - Rendezvous Docking and Space Robotics Experiments , 1999 .

[60]  Sung-Hoon Ahn,et al.  Locomotion of inchworm-inspired robot made of smart soft composite (SSC) , 2014, Bioinspiration & biomimetics.

[61]  Kinji Asaka,et al.  Recent advances in ionic polymer–metal composite actuators and their modeling and applications , 2013 .

[62]  Ron Pelrine,et al.  Multiple-degrees-of-freedom electroelastomer roll actuators , 2004 .

[63]  Richard H. C. Bonser,et al.  Design of a biomimetic skin for an octopus-inspired robot — Part II: Development of the skin artefact , 2011 .

[64]  Ian D. Walker,et al.  Soft robotics: Biological inspiration, state of the art, and future research , 2008 .

[65]  Robert B. Friend,et al.  Orbital Express program summary and mission overview , 2008, SPIE Defense + Commercial Sensing.

[66]  Tamar Flash,et al.  Dynamic model of the octopus arm. II. Control of reaching movements. , 2005, Journal of neurophysiology.

[67]  G. Wallace,et al.  Ionic electroactive polymer artificial muscles in space applications , 2014, Scientific Reports.

[68]  Yujun Cao,et al.  Review of Soft-bodied Robots , 2012 .

[69]  Cong Wang,et al.  Robust two-degree-of-freedom iterative learning control for flexibility compensation of industrial robot manipulators , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[70]  Ephrahim Garcia,et al.  A piezoelectric-driven inchworm locomotion device , 2001 .

[71]  Sung-hoon Ahn,et al.  A review on IPMC material as actuators and sensors: Fabrications, characteristics and applications , 2012 .

[72]  Yoseph Bar-Cohen,et al.  Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, Second Edition , 2004 .

[73]  John Kenneth Salisbury,et al.  Configuration Tracking for Continuum Manipulators With Coupled Tendon Drive , 2009, IEEE Transactions on Robotics.

[74]  I. D. Walker,et al.  Robot strings: Long, thin continuum robots , 2013, 2013 IEEE Aerospace Conference.

[75]  Nabil Simaan,et al.  Snake-Like Units Using Flexible Backbones and Actuation Redundancy for Enhanced Miniaturization , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[76]  Ian D. Walker,et al.  Limiting-case Analysis of Continuum Trunk Kinematics , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[77]  Ian D. Walker,et al.  Dynamic Modelling for Planar Extensible Continuum Robot Manipulators , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[78]  Heinrich M. Jaeger,et al.  JSEL: Jamming Skin Enabled Locomotion , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[79]  D. Rus,et al.  Design, fabrication and control of soft robots , 2015, Nature.

[80]  E. K. Koh,et al.  Stable adaptive control of multivariable servomechanisms, with application to a passive line-of-sight stabilization system , 1996, IEEE Trans. Ind. Electron..

[81]  B Mazzolai,et al.  An octopus-bioinspired solution to movement and manipulation for soft robots , 2011, Bioinspiration & biomimetics.

[82]  Ian D. Walker,et al.  Practical Kinematics for Real-Time Implementation of Continuum Robots , 2006, IEEE Transactions on Robotics.

[83]  Christian S. Sallaberger,et al.  Canadian space robotic activities , 1997 .

[84]  Masayoshi Tomizuka,et al.  Dual-Stage Iterative Learning Control for MIMO Mismatched System With Application to Robots With Joint Elasticity , 2014, IEEE Transactions on Control Systems Technology.

[85]  Jing Xiao,et al.  Real-time adaptive motion planning for a continuum manipulator , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[86]  Masayuki Inaba,et al.  Inverse kinematics of gel robots made of electro-active polymer gel , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[87]  Kyu-Jin Cho,et al.  Omega-Shaped Inchworm-Inspired Crawling Robot With Large-Index-and-Pitch (LIP) SMA Spring Actuators , 2013, IEEE/ASME Transactions on Mechatronics.

[88]  Stephen A. Morin,et al.  Camouflage and Display for Soft Machines , 2012, Science.

[89]  Robert J. Webster,et al.  Mechanics of Precurved-Tube Continuum Robots , 2009, IEEE Transactions on Robotics.

[90]  Ian D. Walker,et al.  A Neural Network Controller for Continuum Robots , 2007, IEEE Transactions on Robotics.

[91]  Paolo Dario,et al.  Design and Development of a Soft Actuator for a Robot Inspired by the Octopus Arm , 2008, ISER.

[92]  Shuxiang Guo,et al.  A Novel Soft Biomimetic Microrobot with Two Motion Attitudes , 2012, Sensors.

[93]  Tanneguy Redarce,et al.  Sensor-based guidance control of a continuum robot for a semi-autonomous colonoscopy , 2007, Robotics Auton. Syst..

[94]  Ian D. Walker,et al.  Kinematics for multisection continuum robots , 2006, IEEE Transactions on Robotics.

[95]  Daniela Rus,et al.  A Recipe for Soft Fluidic Elastomer Robots , 2015, Soft robotics.

[96]  H. Brussel,et al.  A flexible distal tip with two degrees of freedom for enhanced dexterity in endoscopic robot surgery , 2002 .

[97]  Matteo Cianchetti,et al.  A general method for the design and fabrication of shape memory alloy active spring actuators , 2012 .

[98]  Matteo Cianchetti,et al.  Study and fabrication of bioinspired Octopus arm mockups tested on a multipurpose platform , 2010, 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics.

[99]  B Mazzolai,et al.  Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions , 2012, Bioinspiration & biomimetics.

[100]  Ward Small,et al.  Biomedical applications of thermally activated shape memory polymers. , 2009, Journal of materials chemistry.

[101]  Filip Ilievski,et al.  Soft robotics for chemists. , 2011, Angewandte Chemie.

[102]  Darwin G. Caldwell,et al.  Locomotion with continuum limbs , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[103]  Dirk Lefeber,et al.  Pneumatic artificial muscles: Actuators for robotics and automation , 2002 .

[104]  Kazuya Yoshida,et al.  An adaptive control of a space manipulator for vibration suppression , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[105]  B Mazzolai,et al.  Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements , 2012, Bioinspiration & biomimetics.

[106]  Sung-Hoon Ahn,et al.  Manufacturing of inchworm robot using shape memory alloy (SMA) embedded composite structure , 2011 .

[107]  Quan Pan,et al.  Multi-objective optimal preliminary planning of multi-debris active removal mission in LEO , 2017, Science China Information Sciences.

[108]  Christopher D. Rahn,et al.  Design of Continuous Backbone, Cable-Driven Robots , 2002 .

[109]  Helmut Hauser,et al.  A soft body as a reservoir: case studies in a dynamic model of octopus-inspired soft robotic arm , 2013, Front. Comput. Neurosci..

[110]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[111]  Richard H. C. Bonser,et al.  Design of a biomimetic skin for an octopus-inspired robot — Part I: Characterising octopus skin , 2011 .

[112]  Cagdas D. Onal,et al.  Design and control of a soft and continuously deformable 2D robotic manipulation system , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[113]  Jennifer H. Shin,et al.  Shape memory alloy-based small crawling robots inspired by C. elegans , 2011, Bioinspiration & biomimetics.

[114]  Daniela Rus,et al.  Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot , 2013, Bioinspiration & biomimetics.

[115]  Ian D. Walker,et al.  Kinematics and the Implementation of an Elephant's Trunk Manipulator and Other Continuum Style Robots , 2003, J. Field Robotics.

[116]  Daniel E. Hastings,et al.  On-Orbit Servicing: A New Value Proposition for Satellite Design and Operation , 2007 .

[117]  Paolo Dario,et al.  A SMA actuated artificial earthworm , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[118]  Gu Cheng-lin A flexible robot hand with embedded SMA actuators , 2006 .

[119]  Masayuki Inaba,et al.  Inverse dynamics of gel robots made of electro-active polymer gel , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).