Controlling Wild Bodies Using Discrete Transition Systems

This paper proposes methods for achieving basic tasks such as navigation, patrolling, herding, and coverage by exploiting the wild motions of very simple bodies in the environment. Bodies move within regions that are connected by gates that enforce specific rules of passage. This leads to a hybrid systems approach in which the behaviors define a discrete transition system. Tasks can even be specified using a Linear Temporal Logic (LTL) formula and are converted into a multibody implementation that satisfies the formula. Common issues such as dynamical system modeling, precise state estimation, and state feedback are avoided. The method is demonstrated in a series of experiments that manipulate the flow of weasel balls (without the weasels) and Hexbug Nano vibrating bugs.

[1]  Hadas Kress-Gazit,et al.  Transforming high level tasks to low level controllers , 2008 .

[2]  Maja J. Matarić,et al.  Ergodic Dynamics by Design: A Route to Predictable Multi-Robot Systems , 2005 .

[3]  Hadas Kress-Gazit,et al.  LTLMoP: Experimenting with language, Temporal Logic and robot control , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  L. Bunimovich On the ergodic properties of nowhere dispersing billiards , 1979 .

[5]  Shin Nakajima,et al.  The SPIN Model Checker : Primer and Reference Manual , 2004 .

[6]  Vijay Kumar,et al.  Hybrid control of formations of robots , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[7]  Peter I. Corke,et al.  Virtual fences for controlling cows , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[8]  Hadas Kress-Gazit,et al.  Translating Structured English to Robot Controllers , 2008, Adv. Robotics.

[9]  George J. Pappas,et al.  Discrete abstractions of hybrid systems , 2000, Proceedings of the IEEE.

[10]  Matthew T. Mason,et al.  An exploration of sensorless manipulation , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[11]  S. LaValle Sensing and Filtering : A Tutorial Based on Preimages and Information Spaces , 2011 .

[12]  Dan Reznik,et al.  Building a Universal Planar Manipulator , 2000 .

[13]  Georgios E. Fainekos,et al.  Revising temporal logic specifications for motion planning , 2011, 2011 IEEE International Conference on Robotics and Automation.

[14]  Paul Umbanhowar,et al.  Sliding Manipulation of Rigid Bodies on a Controlled 6-DoF Plate , 2011, Robotics: Science and Systems.

[15]  Bruce Randall Donald,et al.  Algorithms for Sensorless Manipulation Using a Vibrating Surface , 2000, Algorithmica.

[16]  Paulo Tabuada,et al.  Linear Time Logic Control of Discrete-Time Linear Systems , 2006, IEEE Transactions on Automatic Control.

[17]  Calin Belta,et al.  Optimal path planning under temporal logic constraints , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Marco Pistore,et al.  Nusmv version 2: an opensource tool for symbolic model checking , 2002, CAV 2002.

[19]  Matthew T. Mason,et al.  Mechanics of Robotic Manipulation , 2001 .

[20]  Min Wu,et al.  Synthesis of output feedback control for motion planning based on LTL specifications , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  Richard L. Francis,et al.  Network models for building evacuation , 1982 .

[22]  V. Borkar,et al.  A unified framework for hybrid control: model and optimal control theory , 1998, IEEE Trans. Autom. Control..

[23]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[24]  Hadas Kress-Gazit,et al.  Where's Waldo? Sensor-Based Temporal Logic Motion Planning , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[25]  Paulo Tabuada,et al.  Bisimulation relations for dynamical, control, and hybrid systems , 2005, Theor. Comput. Sci..

[26]  Michael Erdmann,et al.  Randomization in Robot Tasks , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[27]  Serge Tabachnikov,et al.  Geometry and billiards , 2005 .

[28]  Neil D. Lawrence,et al.  WiFi-SLAM Using Gaussian Process Latent Variable Models , 2007, IJCAI.

[29]  Lydia E. Kavraki,et al.  Sampling-based motion planning with temporal goals , 2010, 2010 IEEE International Conference on Robotics and Automation.

[30]  Hadas Kress-Gazit,et al.  Temporal-Logic-Based Reactive Mission and Motion Planning , 2009, IEEE Transactions on Robotics.

[31]  S. Shankar Sastry,et al.  Conflict resolution for air traffic management: a study in multiagent hybrid systems , 1998, IEEE Trans. Autom. Control..

[32]  Klaus Schneider,et al.  Verification of Reactive Systems: Formal Methods and Algorithms , 2003 .

[33]  Xiaoming Hu,et al.  A hybrid control approach to action coordination for mobile robots , 1999, Autom..

[34]  Steven M. LaValle,et al.  Controlling Wild Bodies Using Linear Temporal Logic , 2011, Robotics: Science and Systems.

[35]  Calin Belta,et al.  Automatic Deployment of Distributed Teams of Robots From Temporal Logic Motion Specifications , 2010, IEEE Transactions on Robotics.

[36]  Steven M. LaValle,et al.  Manipulating Ergodic Bodies through Gentle Guidance , 2012 .

[37]  Kenneth Y. Goldberg,et al.  Orienting polygonal parts without sensors , 1993, Algorithmica.

[38]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[39]  Calin Belta,et al.  Temporal Logic Planning and Control of Robotic Swarms by Hierarchical Abstractions , 2007, IEEE Transactions on Robotics.

[40]  Calin Belta,et al.  Motion planning and control from temporal logic specifications with probabilistic satisfaction guarantees , 2010, 2010 IEEE International Conference on Robotics and Automation.