Controlling Wild Bodies Using Linear Temporal Logic

There is substantial interest in controlling a group of bodies from specifications of tasks given in a high-level, human-like language. This paper proposes a methodology that creates low-level hybrid controllers that guarantee that a group of bodies execute a high-level specified task without dynamical system modeling, precise state estimation or state feedback. We do this by exploiting the wild motions of very simple bodies in an environment connected by gates which serve as the system inputs, as opposed to motors on the bodies. We present experiments using inexpensive hardware demonstrating the practical feasibility of our approach to solving tasks such as navigation, patrolling, and coverage.

[1]  Marco Pistore,et al.  NuSMV 2: An OpenSource Tool for Symbolic Model Checking , 2002, CAV.

[2]  Hadas Kress-Gazit,et al.  Temporal Logic Motion Planning for Mobile Robots , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[3]  Dan Reznik,et al.  Building a Universal Planar Manipulator , 2000 .

[4]  Georgios E. Fainekos,et al.  Revising temporal logic specifications for motion planning , 2011, 2011 IEEE International Conference on Robotics and Automation.

[5]  Matthew T. Mason,et al.  An exploration of sensorless manipulation , 1986, IEEE J. Robotics Autom..

[6]  Neil D. Lawrence,et al.  WiFi-SLAM Using Gaussian Process Latent Variable Models , 2007, IJCAI.

[7]  V. Borkar,et al.  A unified framework for hybrid control: model and optimal control theory , 1998, IEEE Trans. Autom. Control..

[8]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[9]  K.J. Kyriakopoulos,et al.  Automatic synthesis of multi-agent motion tasks based on LTL specifications , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[10]  Vijay Kumar,et al.  Hybrid control of formations of robots , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[11]  Calin Belta,et al.  Temporal Logic Planning and Control of Robotic Swarms by Hierarchical Abstractions , 2007, IEEE Transactions on Robotics.

[12]  Min Wu,et al.  Synthesis of output feedback control for motion planning based on LTL specifications , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  Antonio Bicchi,et al.  Symbolic planning and control of robot motion [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[14]  Richard L. Francis,et al.  Network models for building evacuation , 1982 .

[15]  Richard L. Francis,et al.  Network models for building evacuation , 1982 .

[16]  Bruce Randall Donald,et al.  Algorithms for Sensorless Manipulation Using a Vibrating Surface , 2000, Algorithmica.

[17]  Paulo Tabuada,et al.  Linear Time Logic Control of Discrete-Time Linear Systems , 2006, IEEE Transactions on Automatic Control.

[18]  Matthew T. Mason,et al.  Mechanics of Robotic Manipulation , 2001 .

[19]  Peter I. Corke,et al.  Virtual fences for controlling cows , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[20]  Calin Belta,et al.  Motion planning and control from temporal logic specifications with probabilistic satisfaction guarantees , 2010, 2010 IEEE International Conference on Robotics and Automation.

[21]  Matthew T. Mason,et al.  An exploration of sensorless manipulation , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[22]  Marco Pistore,et al.  Nusmv version 2: an opensource tool for symbolic model checking , 2002, CAV 2002.

[23]  E. Feron,et al.  Robust hybrid control for autonomous vehicle motion planning , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[24]  Hadas Kress-Gazit,et al.  Translating Structured English to Robot Controllers , 2008, Adv. Robotics.

[25]  Lynne E. Parker,et al.  Multi-Robot Systems: From Swarms to Intelligent Automata , 2002, Springer Netherlands.

[26]  Hadas Kress-Gazit,et al.  Temporal-Logic-Based Reactive Mission and Motion Planning , 2009, IEEE Transactions on Robotics.

[27]  Lydia E. Kavraki,et al.  Sampling-based motion planning with temporal goals , 2010, 2010 IEEE International Conference on Robotics and Automation.

[28]  Serge Tabachnikov,et al.  Geometry and billiards , 2005 .

[29]  Calin Belta,et al.  Automatic Deployment of Distributed Teams of Robots From Temporal Logic Motion Specifications , 2010, IEEE Transactions on Robotics.

[30]  Steven M. LaValle,et al.  Manipulating Ergodic Bodies through Gentle Guidance , 2012 .

[31]  Kenneth Y. Goldberg,et al.  Orienting polygonal parts without sensors , 1993, Algorithmica.

[32]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[33]  Hadas Kress-Gazit,et al.  Transforming high level tasks to low level controllers , 2008 .

[34]  George J. Pappas,et al.  Discrete abstractions of hybrid systems , 2000, Proceedings of the IEEE.

[35]  Calin Belta,et al.  Optimal path planning under temporal logic constraints , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[36]  Michael Erdmann,et al.  Randomization in Robot Tasks , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[37]  Hadas Kress-Gazit,et al.  LTLMoP: Experimenting with language, Temporal Logic and robot control , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[38]  Maja J. Matarić,et al.  Ergodic Dynamics by Design: A Route to Predictable Multi-Robot Systems , 2005 .

[39]  Shin Nakajima,et al.  The SPIN Model Checker : Primer and Reference Manual , 2004 .