Markov random field terrain classification for autonomous robots in unstructured terrain

This thesis addresses the problem of terrain classification in unstructured outdoor environments. Terrain classification includes the detection of obstacles and passable areas as well as the analysis of ground surfaces. A 3D laser range finder is used as primary sensor for perceiving the surroundings of the robot. First of all, a grid structure is introduced for data reduction. The chosen data representation allows for multi-sensor integration, e.g., cameras for color and texture information or further laser range finders for improved data density. Subsequently, features are computed for each terrain cell within the grid. Classification is performedrnwith a Markov random field for context-sensitivity and to compensate for sensor noise and varying data density within the grid. A Gibbs sampler is used for optimization and is parallelized on the CPU and GPU in order to achieve real-time performance. Dynamic obstacles are detected and tracked using different state-of-the-art approaches. The resulting information - where other traffic participants move and are going to move to - is used to perform inference in regions where the terrain surface is partially or completely invisible for the sensors. Algorithms are tested and validated on different autonomous robot platforms and the evaluation is carried out with human-annotated ground truth maps of millions of measurements. The terrain classification approach of this thesis proved reliable in all real-time scenarios and domains and yielded new insights. Furthermore, if combined with a path planning algorithm, it enables full autonomy for all kinds of wheeled outdoor robots in natural outdoor environments.

[1]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[2]  Fadi Dornaika,et al.  Hand-Eye Calibration , 1995, Int. J. Robotics Res..

[3]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[4]  Fatih Murat Porikli,et al.  Integral histogram: a fast way to extract histograms in Cartesian spaces , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[5]  Andreas Zell,et al.  Adaptive bayesian filtering for vibration-based terrain classification , 2009, 2009 IEEE International Conference on Robotics and Automation.

[6]  M. O'Rourke,et al.  Autonomous Navigation of an Unmanned Ground Vehicle in Unstructured Forest Terrain , 2008, 2008 ECSIS Symposium on Learning and Adaptive Behaviors for Robotic Systems (LAB-RS).

[7]  N. DeClaris,et al.  Path planning for autonomous vehicles driving over rough terrain , 1998, Proceedings of the 1998 IEEE International Symposium on Intelligent Control (ISIC) held jointly with IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA) Intell.

[8]  Hugh F. Durrant-Whyte,et al.  Simultaneous Localization, Mapping and Moving Object Tracking , 2007, Int. J. Robotics Res..

[9]  Issa A. D. Nesnas,et al.  T CLARAty : A Collaborative Software for Advancing Robotic Technologies , .

[10]  Takashi Tsubouchi,et al.  Outdoor navigation of a mobile robot between buildings based on DGPS and odometry data fusion , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[11]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[12]  Po-Sen Huang,et al.  Intrinsic parameters calibration for multi-beam LiDAR using the Levenberg-Marquardt algorithm , 2012, IVCNZ '12.

[13]  Wolfram Burgard,et al.  Improving robot navigation in structured outdoor environments by identifying vegetation from laser data , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  Hans-Hellmut Nagel,et al.  Model-Based Object Tracking in Traffic Scenes , 1992, ECCV.

[15]  Martin Jägersand,et al.  A comparative analysis of geometric and image-based volumetric and intensity data registration algorithms , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[16]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[17]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .

[18]  François Michaud,et al.  Robotic Software Integration Using MARIE , 2006 .

[19]  Zehang Sun,et al.  On-road vehicle detection: a review , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  David A. McAllester,et al.  Object Detection with Discriminatively Trained Part Based Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Thierry Chateau,et al.  Pedestrian Detection and Tracking in an Urban Environment Using a Multilayer Laser Scanner , 2010, IEEE Transactions on Intelligent Transportation Systems.

[22]  Aaron C. Courville,et al.  Interacting Markov Random Fields for Simultaneous Terrain Modeling and Obstacle Detection , 2005, Robotics: Science and Systems.

[23]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[24]  Tobias Gindele,et al.  Bayesian Occupancy grid Filter for dynamic environments using prior map knowledge , 2009, 2009 IEEE Intelligent Vehicles Symposium.

[25]  Roland Siegwart,et al.  An Interpolated Dynamic Navigation Function , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[26]  Gregory Z. Grudic,et al.  Local path planning in image space for autonomous robot navigation in unstructured environments , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[27]  Shin'ichi Yuta,et al.  Fusion of double layered multiple laser range finders for people detection from a mobile robot , 2008, 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems.

[28]  Cang Ye,et al.  A new terrain mapping method for mobile robots obstacle negotiation , 2003, SPIE Defense + Commercial Sensing.

[29]  Tomás Svoboda,et al.  A Convenient Multicamera Self-Calibration for Virtual Environments , 2005, Presence: Teleoperators & Virtual Environments.

[30]  Kai Oliver Arras,et al.  Tracking people in 3D using a bottom-up top-down detector , 2011, 2011 IEEE International Conference on Robotics and Automation.

[31]  Alberto Del Bimbo,et al.  Camera Calibration with Two Arbitrary Coaxial Circles , 2006, ECCV.

[32]  Trung-Dung Vu,et al.  Vehicle Perception: Localization, Mapping with Detection, Classification and Tracking of Moving Objects , 2009 .

[33]  Pietro Perona,et al.  Integral Channel Features , 2009, BMVC.

[34]  Hadi Aliakbarpour,et al.  An efficient algorithm for extrinsic calibration between a 3D laser range finder and a stereo camera for surveillance , 2009, 2009 International Conference on Advanced Robotics.

[35]  Sven Behnke,et al.  Robust Ego-Motion Estimation with ToF Cameras , 2009, ECMR.

[36]  Edwin Olson,et al.  Positive and negative obstacle detection using the HLD classifier , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[37]  Jan-Michael Frahm,et al.  RANSAC for (Quasi-)Degenerate data (QDEGSAC) , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[38]  Dieter Fox,et al.  RGB-D object discovery via multi-scene analysis , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[39]  Wolff,et al.  Collective Monte Carlo updating for spin systems. , 1989, Physical review letters.

[40]  Regis Hoffman,et al.  Ladar-Based Vehicle Detection and Tracking in Cluttered Environments , 2008 .

[41]  Luc Van Gool,et al.  Robust tracking-by-detection using a detector confidence particle filter , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[42]  Robert Pless,et al.  Extrinsic calibration of a camera and laser range finder (improves camera calibration) , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[43]  Hans Utz,et al.  Miro - middleware for mobile robot applications , 2002, IEEE Trans. Robotics Autom..

[44]  Michael I. Jordan,et al.  Revisiting k-means: New Algorithms via Bayesian Nonparametrics , 2011, ICML.

[45]  Roland Siegwart,et al.  Extrinsic self calibration of a camera and a 3D laser range finder from natural scenes , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[46]  Evangelos E. Milios,et al.  Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[47]  Subhransu Maji,et al.  Classification using intersection kernel support vector machines is efficient , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[48]  Klaus Dietmayer,et al.  3D vehicle detection using a laser scanner and a video camera , 2008 .

[49]  José-Joel Gonzalez-Barbosa,et al.  LIDAR Velodyne HDL-64E Calibration Using Pattern Planes , 2011 .

[50]  Chieh-Chih Wang,et al.  LADAR-based detection and tracking of moving objects from a ground vehicle at high speeds , 2003, IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No.03TH8683).

[51]  K. Golden,et al.  The Ising model and critical behavior of transport in binary composite media , 2012 .

[52]  Christian Laugier,et al.  Bayesian Occupancy Filtering for Multitarget Tracking: An Automotive Application , 2006, Int. J. Robotics Res..

[53]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[54]  Cristiano Premebida,et al.  Exploiting LIDAR-based features on pedestrian detection in urban scenarios , 2009, 2009 12th International IEEE Conference on Intelligent Transportation Systems.

[55]  Robert B. Fisher,et al.  Estimating 3-D rigid body transformations: a comparison of four major algorithms , 1997, Machine Vision and Applications.

[56]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[57]  Pietro Perona,et al.  The Fastest Pedestrian Detector in the West , 2010, BMVC.

[58]  Pietro Perona,et al.  Pedestrian Detection: An Evaluation of the State of the Art , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Patrick Rives,et al.  Calibration between a central catadioptric camera and a laser range finder for robotic applications , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[60]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[61]  Rüdiger Dillmann,et al.  Recursive importance sampling for efficient grid-based occupancy filtering in dynamic environments , 2010, 2010 IEEE International Conference on Robotics and Automation.

[62]  Jean-Luc Dugelay,et al.  A Markov Random Field description of fuzzy color segmentation , 2010, 2010 2nd International Conference on Image Processing Theory, Tools and Applications.

[63]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[64]  Vincenzo Caglioti,et al.  Mutual Calibration of a Camera and a Laser Rangefinder , 2008, VISAPP.

[65]  Armin B. Cremers,et al.  Person tracking in three-dimensional laser range data with explicit occlusion adaption , 2011, 2011 IEEE International Conference on Robotics and Automation.

[66]  Bruce A. MacDonald,et al.  Player 2.0: Toward a Practical Robot Programming Framework , 2008 .

[67]  Sergios Theodoridis,et al.  Pattern Recognition , 1998, IEEE Trans. Neural Networks.

[68]  Roland Siegwart,et al.  Robust embedded egomotion estimation , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[69]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[70]  H. Kawamura Two models of spin glasses — Ising versus Heisenberg , 2010, 1003.3510.

[71]  Alonzo Kelly,et al.  Optimal Rough Terrain Trajectory Generation for Wheeled Mobile Robots , 2007, Int. J. Robotics Res..

[72]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[73]  Roberto Manduchi,et al.  Obstacle Detection and Terrain Classification for Autonomous Off-Road Navigation , 2005, Auton. Robots.

[74]  Mei-Chen Yeh,et al.  Fast Human Detection Using a Cascade of Histograms of Oriented Gradients , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[75]  Alberto Broggi,et al.  Sensing requirements for a 13,000 km intercontinental autonomous drive , 2010, 2010 IEEE Intelligent Vehicles Symposium.

[76]  Steven Dubowsky,et al.  Vibration-based Terrain Analysis for Mobile Robots , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[77]  Gaurav S. Sukhatme,et al.  Semantic Mapping Using Mobile Robots , 2008, IEEE Transactions on Robotics.

[78]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[79]  Christoph Mertz,et al.  Pedestrian Detection and Tracking Using Three-dimensional LADAR Data , 2010, Int. J. Robotics Res..

[80]  Ben Taskar,et al.  Online, self-supervised terrain classification via discriminatively trained submodular Markov random fields , 2008, 2008 IEEE International Conference on Robotics and Automation.

[81]  Tomaso A. Poggio,et al.  A Trainable System for Object Detection , 2000, International Journal of Computer Vision.

[82]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[83]  Larry H. Matthies,et al.  Negative obstacle detection by thermal signature , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[84]  Paul A. Viola,et al.  Detecting Pedestrians Using Patterns of Motion and Appearance , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[85]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[86]  Olivier Alata,et al.  Parametric models of linear prediction error distribution for color texture and satellite image segmentation , 2011, Comput. Vis. Image Underst..

[87]  Winston Churchill,et al.  Experience-based navigation for long-term localisation , 2013, Int. J. Robotics Res..

[88]  Roland Siegwart,et al.  Inertial and 3D-odometry fusion in rough terrain - towards real 3D navigation , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[89]  Stefano Ghidoni,et al.  TerraMax Vision at the Urban Challenge 2007 , 2010, IEEE Transactions on Intelligent Transportation Systems.

[90]  Bernt Schiele,et al.  New features and insights for pedestrian detection , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[91]  Takashi Suehiro,et al.  RT-middleware: distributed component middleware for RT (robot technology) , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[92]  Sebastian Thrun,et al.  Model based vehicle detection and tracking for autonomous urban driving , 2009, Auton. Robots.

[93]  Takashi Naito,et al.  Pedestrian recognition using high-definition LIDAR , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[94]  A. Ng,et al.  Touch Based Perception for Object Manipulation , 2007 .

[95]  Franklin C. Crow,et al.  Summed-area tables for texture mapping , 1984, SIGGRAPH.

[96]  Andreas Zell,et al.  Grid-based visual terrain classification for outdoor robots using local features , 2011, 2011 IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems (CIVTS) Proceedings.

[97]  Daniele Nardi,et al.  OpenRDK: A modular framework for robotic software development , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[98]  Cordelia Schmid,et al.  Human Detection Using Oriented Histograms of Flow and Appearance , 2006, ECCV.

[99]  Ilya Sutskever,et al.  Parallelizable Sampling of Markov Random Fields , 2010, AISTATS.

[100]  Wolfram Burgard,et al.  Autonomous Terrain Mapping and Classification Using Hidden Markov Models , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[101]  Ryo Kurazume,et al.  Multi-Part People Detection Using 2D Range Data , 2010, Int. J. Soc. Robotics.

[102]  K.C.J. Dietmayer,et al.  IMM object tracking for high dynamic driving maneuvers , 2004, IEEE Intelligent Vehicles Symposium, 2004.

[103]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[104]  Roland Siegwart,et al.  A Layered Approach to People Detection in 3D Range Data , 2010, AAAI.

[105]  Saeed Saremi,et al.  Hierarchical model of natural images and the origin of scale invariance , 2013, Proceedings of the National Academy of Sciences.

[106]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[107]  Michael Happold,et al.  Enhancing Supervised Terrain Classification with Predictive Unsupervised Learning , 2006, Robotics: Science and Systems.

[108]  Beate Meffert,et al.  Fast Computation of Region Homogeneity with Application in a Surveillance Task , 2010 .

[109]  George D. C. Cavalcanti,et al.  MLPBoost: A combined AdaBoost / multi-layer perceptron network approach for face detection , 2012, 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[110]  Andreas Zell,et al.  Terrain classification with conditional random fields on fused 3D LIDAR and camera data , 2013, 2013 European Conference on Mobile Robots.

[111]  Karl Murphy,et al.  Driving Autonomously Offroad up to 35 km/h | NIST , 2000 .

[112]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[113]  Daniel D. Morris,et al.  Multi-sensor Detection and Tracking of Humans for Safe Operations with Unmanned Ground Vehicles , 2008 .

[114]  Zoltan Kato,et al.  A Markov random field image segmentation model for color textured images , 2006, Image Vis. Comput..

[115]  Herman Bruyninckx,et al.  Open robot control software: the OROCOS project , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[116]  Richard Szeliski,et al.  A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[117]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[118]  Hirotsugu Matsuda The Ising Model for Population Biology , 1981 .

[119]  J. M. Hammersley,et al.  Markov fields on finite graphs and lattices , 1971 .

[120]  Liang Zhao,et al.  Qualitative and quantitative car tracking from a range image sequence , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[121]  T. Schenk,et al.  Fusing Imagery and 3D Point Clouds for Reconstructing Visible Surfaces of Urban Scenes , 2007, 2007 Urban Remote Sensing Joint Event.

[122]  Alessandro Farinelli,et al.  SPQR-RDK: A Modular Framework for Programming Mobile Robots , 2004, RoboCup.

[123]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[124]  Alexei Makarenko,et al.  Towards component-based robotics , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[125]  Sebastian Thrun,et al.  Junior: The Stanford entry in the Urban Challenge , 2008, J. Field Robotics.

[126]  Sebastian Thrun,et al.  An Application of Markov Random Fields to Range Sensing , 2005, NIPS.

[127]  D. Greig,et al.  Exact Maximum A Posteriori Estimation for Binary Images , 1989 .

[128]  Emmanuel G. Collins,et al.  Speed independent terrain classification using Singular Value Decomposition Interpolation , 2011, 2011 IEEE International Conference on Robotics and Automation.

[129]  Jean-Christophe Olivo-Marin,et al.  Color image segmentation based on Markov random field clustering for histological image analysis , 2002, Object recognition supported by user interaction for service robots.

[130]  Ingemar J. Cox,et al.  An Efficient Implementation of Reid's Multiple Hypothesis Tracking Algorithm and Its Evaluation for the Purpose of Visual Tracking , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[131]  Cang Ye,et al.  A method for mobile robot navigation on rough terrain , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[132]  Guilherme A. S. Pereira,et al.  PATH PLANNING FOR MOBILE ROBOTS OPERATING IN OUTDOOR ENVIRONMENTS USING MAP OVERLAY AND TRIANGULAR DECOMPOSITION , 2005 .

[133]  Sanjiv Singh,et al.  An efficient on-line path planner for outdoor mobile robots , 2000, Robotics Auton. Syst..

[134]  A. Ohya,et al.  Localization of Outdoor Mobile Robot with Multi-Path Bias Detection , 2007, 2007 International Conference on Mechatronics and Automation.

[135]  Rudolph Triebel,et al.  Non-Iterative Vision-Based Interpolation of 3D Laser Scans , 2007 .

[136]  Martial Hebert,et al.  Natural terrain classification using 3-d ladar data , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[137]  Ian Reid,et al.  fastHOG – a real-time GPU implementation of HOG , 2011 .

[138]  Rui P. Rocha,et al.  Data Fusion Calibration for a 3D Laser Range Finder and a Camera using Inertial Data , 2009, ECMR.

[139]  Nando de Freitas,et al.  Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.

[140]  Jean-Yves Bouguet,et al.  Camera calibration toolbox for matlab , 2001 .

[141]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[142]  E. Nebot,et al.  Autonomous Navigation and Map building Using Laser Range Sensors in Outdoor Applications , 2000 .

[143]  David A. Clausi,et al.  Unsupervised image segmentation using a simple MRF model with a new implementation scheme , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[144]  Sebastian Thrun,et al.  Large-Scale Robotic 3-D Mapping of Urban Structures , 2004, ISER.

[145]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[146]  Dimitrios G. Kottas,et al.  3D LIDAR–camera intrinsic and extrinsic calibration: Identifiability and analytical least-squares-based initialization , 2012, Int. J. Robotics Res..

[147]  E. M. Lifshitz,et al.  Statistical physics. Pt.1 , 1969 .

[148]  Derek D. Lichti,et al.  Static Calibration and Analysis of the Velodyne HDL-64E S2 for High Accuracy Mobile Scanning , 2010, Remote. Sens..

[149]  Masafumi Hashimoto,et al.  Multilayer lidar-based pedestrian tracking in urban environments , 2010, 2010 IEEE Intelligent Vehicles Symposium.

[150]  Bernt Schiele,et al.  Multi-cue onboard pedestrian detection , 2009, CVPR.

[151]  Rudolph van der Merwe,et al.  Sigma-Point Kalman Filters for Integrated Navigation , 2004 .

[152]  Arthur Gretton,et al.  Parallel Gibbs Sampling: From Colored Fields to Thin Junction Trees , 2011, AISTATS.

[153]  Josiane Zerubia,et al.  A Hierarchical Markov Random Field Model and Multitemperature Annealing for Parallel Image Classification , 1996, CVGIP Graph. Model. Image Process..

[154]  Josiane Zerubia,et al.  Image Segmentation Using Markov Random Field Model in Fully Parallel Cellular Network Architectures , 2000 .

[155]  Daniel Cremers,et al.  A convex relaxation approach for computing minimal partitions , 2009, CVPR.

[156]  Johannes Pellenz Aktive Sensorik für autonome mobile Systeme , 2011 .

[157]  Dieter Fox,et al.  Object Recognition in 3D Point Clouds Using Web Data and Domain Adaptation , 2010, Int. J. Robotics Res..

[158]  Luke Fletcher,et al.  A perception-driven autonomous urban vehicle , 2008 .

[159]  Silvio Savarese,et al.  Extrinsic Calibration of a 3D Laser Scanner and an Omnidirectional Camera , 2010 .

[160]  Andreas Nüchter,et al.  3D Robotic Mapping - The Simultaneous Localization and Mapping Problem with Six Degrees of Freedom , 2009, Springer Tracts in Advanced Robotics.

[161]  G. Reina,et al.  Adaptive Kalman Filtering for GPS-based Mobile Robot Localization , 2007, 2007 IEEE International Workshop on Safety, Security and Rescue Robotics.