A Comprehensive Survey of Continual Learning: Theory, Method and Application

To cope with real-world dynamics, an intelligent agent needs to incrementally acquire, update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as continual learning, provides a foundation for AI systems to develop themselves adaptively. In a general sense, continual learning is explicitly limited by catastrophic forgetting, where learning a new task usually results in a dramatic performance drop of the old tasks. Beyond this, increasingly numerous advances have emerged in recent years that largely extend the understanding and application of continual learning. The growing and widespread interest in this direction demonstrates its realistic significance as well as complexity. In this work, we present a comprehensive survey of continual learning, seeking to bridge the basic settings, theoretical foundations, representative methods, and practical applications. Based on existing theoretical and empirical results, we summarize the general objectives of continual learning as ensuring a proper stability-plasticity trade-off and an adequate intra/inter-task generalizability in the context of resource efficiency. Then we provide a state-of-the-art and elaborated taxonomy, extensively analyzing how representative strategies address continual learning, and how they are adapted to particular challenges in various applications. Through an in-depth discussion of continual learning in terms of the current trends, cross-directional prospects and interdisciplinary connections with neuroscience, we believe that such a holistic perspective can greatly facilitate subsequent exploration in this field and beyond.

[1]  David Picard,et al.  FeTrIL: Feature Translation for Exemplar-Free Class-Incremental Learning , 2022, 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV).

[2]  Zeng Zeng,et al.  Efficient Perturbation Inference and Expandable Network for continual learning , 2022, Neural Networks.

[3]  S. Calderara,et al.  Class-Incremental Continual Learning Into the eXtended DER-Verse , 2022, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Bin Liu,et al.  Continual Learning of Natural Language Processing Tasks: A Survey , 2022, ArXiv.

[5]  Changnan Xiao,et al.  A Theoretical Study on Solving Continual Learning , 2022, NeurIPS.

[6]  Sen Lin,et al.  Beyond Not-Forgetting: Continual Learning with Backward Knowledge Transfer , 2022, NeurIPS.

[7]  T. Tuytelaars,et al.  Generative Negative Text Replay for Continual Vision-Language Pretraining , 2022, ECCV.

[8]  Youngmin Oh,et al.  ALIFE: Adaptive Logit Regularizer and Feature Replay for Incremental Semantic Segmentation , 2022, NeurIPS.

[9]  A. Bors,et al.  Task-Free Continual Learning via Online Discrepancy Distance Learning , 2022, NeurIPS.

[10]  S. Calderara,et al.  On the Effectiveness of Lipschitz-Driven Rehearsal in Continual Learning , 2022, NeurIPS.

[11]  Lei Shu,et al.  Continual Training of Language Models for Few-Shot Learning , 2022, EMNLP.

[12]  Adrian Weller,et al.  Continual Learning by Modeling Intra-Class Variation , 2022, Trans. Mach. Learn. Res..

[13]  S. Chaudhuri,et al.  Semantics-Driven Generative Replay for Few-Shot Class Incremental Learning , 2022, ACM Multimedia.

[14]  Jingkuan Song,et al.  Class Gradient Projection For Continual Learning , 2022, ACM Multimedia.

[15]  Shanghang Zhang,et al.  Margin-Based Few-Shot Class-Incremental Learning with Class-Level Overfitting Mitigation , 2022, NeurIPS.

[16]  Ali Ayub,et al.  Few-Shot Continual Active Learning by a Robot , 2022, NeurIPS.

[17]  Andrew D. Bagdanov,et al.  Long-Tailed Class Incremental Learning , 2022, ECCV.

[18]  Razvan Pascanu,et al.  Disentangling Transfer in Continual Reinforcement Learning , 2022, NeurIPS.

[19]  A. Bifet,et al.  A simple but strong baseline for online continual learning: Repeated Augmented Rehearsal , 2022, 2209.13917.

[20]  Liang Wan,et al.  Exploring Example Influence in Continual Learning , 2022, NeurIPS.

[21]  Qiuling Suo,et al.  Meta-Learning with Less Forgetting on Large-Scale Non-Stationary Task Distributions , 2022, ECCV.

[22]  Jianzhuang Liu,et al.  Anti-Retroactive Interference for Lifelong Learning , 2022, ECCV.

[23]  Junmo Kim,et al.  DLCFT: Deep Linear Continual Fine-Tuning for General Incremental Learning , 2022, ECCV.

[24]  K. J. Joseph,et al.  Class-Incremental Learning with Cross-Space Clustering and Controlled Transfer , 2022, ECCV.

[25]  B. Lovell,et al.  Few-Shot Class-Incremental Learning from an Open-Set Perspective , 2022, ECCV.

[26]  Navid Azizan,et al.  One-Pass Learning via Bridging Orthogonal Gradient Descent and Recursive Least-Squares , 2022, 2022 IEEE 61st Conference on Decision and Control (CDC).

[27]  Zhiwu Huang,et al.  S-Prompts Learning with Pre-trained Transformers: An Occam's Razor for Domain Incremental Learning , 2022, NeurIPS.

[28]  J. Liu,et al.  Incremental Few-Shot Semantic Segmentation via Embedding Adaptive-Update and Hyper-class Representation , 2022, ACM Multimedia.

[29]  Dacheng Tao,et al.  Balancing Stability and Plasticity through Advanced Null Space in Continual Learning , 2022, ECCV.

[30]  Jiaxian Guo,et al.  Online Continual Learning with Contrastive Vision Transformer , 2022, ECCV.

[31]  Yang Wang,et al.  Few-Shot Class-Incremental Learning via Entropy-Regularized Data-Free Replay , 2022, ECCV.

[32]  Chuang Gan,et al.  Prototype-Guided Continual Adaptation for Class-Incremental Unsupervised Domain Adaptation , 2022, ECCV.

[33]  K. J. Joseph,et al.  Novel Class Discovery without Forgetting , 2022, ECCV.

[34]  M. Salman Asif,et al.  Incremental Task Learning with Incremental Rank Updates , 2022, ECCV.

[35]  N. Sebe,et al.  Class-incremental Novel Class Discovery , 2022, ECCV.

[36]  Xinchao Wang,et al.  Learning with Recoverable Forgetting , 2022, ECCV.

[37]  Qiuling Suo,et al.  Improving Task-free Continual Learning by Distributionally Robust Memory Evolution , 2022, ICML.

[38]  Jun Zhu,et al.  CoSCL: Cooperation of Small Continual Learners is Stronger than a Big One , 2022, ECCV.

[39]  B. Chaib-draa,et al.  Continual Semantic Segmentation Leveraging Image-level Labels and Rehearsal , 2022, IJCAI.

[40]  Jaewoo Kang,et al.  DyGRAIN: An Incremental Learning Framework for Dynamic Graphs , 2022, IJCAI.

[41]  Ke Chen,et al.  Continual Federated Learning Based on Knowledge Distillation , 2022, IJCAI.

[42]  W. Abraham,et al.  Contributions by metaplasticity to solving the Catastrophic Forgetting Problem , 2022, Trends in Neurosciences.

[43]  Dongyan Zhao,et al.  Adaptive Orthogonal Projection for Batch and Online Continual Learning , 2022, AAAI.

[44]  Liu Liu,et al.  Continual Learning through Retrieval and Imagination , 2022, AAAI.

[45]  Mustafa Burak Gurbuz,et al.  NISPA: Neuro-Inspired Stability-Plasticity Adaptation for Continual Learning in Sparse Networks , 2022, ICML.

[46]  Jesse Thomason,et al.  CLiMB: A Continual Learning Benchmark for Vision-and-Language Tasks , 2022, NeurIPS.

[47]  Bo Zhang,et al.  Fast Lossless Neural Compression with Integer-Only Discrete Flows , 2022, ICML.

[48]  Karol J. Piczak,et al.  Continual Learning with Guarantees via Weight Interval Constraints , 2022, ICML.

[49]  Cheng Lu,et al.  DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps , 2022, NeurIPS.

[50]  Kun-Juan Wei,et al.  Not Just Selection, but Exploration: Online Class-Incremental Continual Learning via Dual View Consistency , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  Dacheng Tao,et al.  Continual Learning with Lifelong Vision Transformer , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  M. Ozay,et al.  Bring Evanescent Representations to Life in Lifelong Class Incremental Learning , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[53]  Yang Zhang,et al.  Few-Shot Incremental Learning for Label-to-Image Translation , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[54]  Yang Wang,et al.  MetaFSCIL: A Meta-Learning Approach for Few-Shot Class Incremental Learning , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[55]  S. Calderara,et al.  Transfer without Forgetting , 2022, ECCV.

[56]  Lucia C. Passaro,et al.  Continual Pre-Training Mitigates Forgetting in Language and Vision , 2022, ArXiv.

[57]  Xueming Li,et al.  EPicker is an exemplar-based continual learning approach for knowledge accumulation in cryoEM particle picking , 2022, Nature Communications.

[58]  Yifan Peng,et al.  Learning to Imagine: Diversify Memory for Incremental Learning using Unlabeled Data , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[59]  Shiyu Chang,et al.  Incremental Prompting: Episodic Memory Prompt for Lifelong Event Detection , 2022, COLING.

[60]  Carel van Niekerk,et al.  Dynamic Dialogue Policy for Continual Reinforcement Learning , 2022, COLING.

[61]  Jennifer G. Dy,et al.  DualPrompt: Complementary Prompting for Rehearsal-free Continual Learning , 2022, ECCV.

[62]  Fu Lee Wang,et al.  FOSTER: Feature Boosting and Compression for Class-Incremental Learning , 2022, ECCV.

[63]  Daniele Calandriello,et al.  Information-theoretic Online Memory Selection for Continual Learning , 2022, ICLR.

[64]  Xuming He,et al.  General Incremental Learning with Domain-aware Categorical Representations , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[65]  N. Vasconcelos,et al.  Class-Incremental Learning with Strong Pre-trained Models , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[66]  Tao Feng,et al.  Overcoming Catastrophic Forgetting in Incremental Object Detection via Elastic Response Distillation , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[67]  Bohyung Han,et al.  Class-Incremental Learning by Knowledge Distillation with Adaptive Feature Consolidation , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[68]  Kiana Ehsani,et al.  Continuous Scene Representations for Embodied AI , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[69]  De-Chuan Zhan,et al.  Few-Shot Class-Incremental Learning by Sampling Multi-Phase Tasks , 2022, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[70]  S. Hoi,et al.  Continual Normalization: Rethinking Batch Normalization for Online Continual Learning , 2022, ICLR.

[71]  Jung-Woo Ha,et al.  Online Continual Learning on a Contaminated Data Stream with Blurry Task Boundaries , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[72]  K. J. Joseph,et al.  Energy-based Latent Aligner for Incremental Learning , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[73]  T. Xiang,et al.  Doodle It Yourself: Class Incremental Learning by Drawing a Few Sketches , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[74]  Andrej Risteski,et al.  Continual learning: a feature extraction formalization, an efficient algorithm, and fundamental obstructions , 2022, NeurIPS.

[75]  E. Ricci,et al.  Uncertainty-aware Contrastive Distillation for Incremental Semantic Segmentation , 2022, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[76]  S. Mudur,et al.  Probing Representation Forgetting in Supervised and Unsupervised Continual Learning , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[77]  Abhinav Gupta,et al.  The Challenges of Continuous Self-Supervised Learning , 2022, ECCV.

[78]  Jie Song,et al.  Meta-attention for ViT-backed Continual Learning , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[79]  Xiao Wang,et al.  Federated Class-Incremental Learning , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[80]  Xuezhi Wang,et al.  Continual Sequence Generation with Adaptive Compositional Modules , 2022, ACL.

[81]  Wenpeng Yin,et al.  ConTinTin: Continual Learning from Task Instructions , 2022, ACL.

[82]  Fu Lee Wang,et al.  Forward Compatible Few-Shot Class-Incremental Learning , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[83]  Fei Mi,et al.  Continual Prompt Tuning for Dialog State Tracking , 2022, ACL.

[84]  Zhengjun Zha,et al.  Self-Sustaining Representation Expansion for Non-Exemplar Class-Incremental Learning , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[85]  Jie Zhou,et al.  ELLE: Efficient Lifelong Pre-training for Emerging Data , 2022, FINDINGS.

[86]  Ari S. Morcos,et al.  Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time , 2022, ICML.

[87]  Xialei Liu,et al.  Representation Compensation Networks for Continual Semantic Segmentation , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[88]  C. Archambeau,et al.  Memory Efficient Continual Learning with Transformers , 2022, NeurIPS.

[89]  Manmohan Chandraker,et al.  On Generalizing Beyond Domains in Cross-Domain Continual Learning , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[90]  Yang Feng,et al.  Overcoming Catastrophic Forgetting beyond Continual Learning: Balanced Training for Neural Machine Translation , 2022, ACL.

[91]  Shafiq R. Joty,et al.  Continual Few-shot Relation Learning via Embedding Space Regularization and Data Augmentation , 2022, ACL.

[92]  Praveen K. Pilly,et al.  Biological underpinnings for lifelong learning machines , 2022, Nature Machine Intelligence.

[93]  Zhenguo Li,et al.  Memory Replay with Data Compression for Continual Learning , 2022, ICLR.

[94]  Xiao-Jing Wang,et al.  Geometry of sequence working memory in macaque prefrontal cortex , 2022, Science.

[95]  Junshan Zhang,et al.  TRGP: Trust Region Gradient Projection for Continual Learning , 2022, ICLR.

[96]  Seyed Iman Mirzadeh,et al.  Architecture Matters in Continual Learning , 2022, ArXiv.

[97]  Huaping Liu,et al.  Continual Learning with Recursive Gradient Optimization , 2022, ICLR.

[98]  Elahe Arani,et al.  Learning Fast, Learning Slow: A General Continual Learning Method based on Complementary Learning System , 2022, ICLR.

[99]  Fabian Caba Heilbron,et al.  vCLIMB: A Novel Video Class Incremental Learning Benchmark , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[100]  Bo Zhang,et al.  Analytic-DPM: an Analytic Estimate of the Optimal Reverse Variance in Diffusion Probabilistic Models , 2022, ICLR.

[101]  Andrew M. Saxe,et al.  Orthogonal representations for robust context-dependent task performance in brains and neural networks , 2022, Neuron.

[102]  Jennifer G. Dy,et al.  Learning to Prompt for Continual Learning , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[103]  Gim Hee Lee,et al.  Static-Dynamic Co-Teaching for Class-Incremental 3D Object Detection , 2021, AAAI.

[104]  Philip H. S. Torr,et al.  Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[105]  Alahari Karteek,et al.  Self-Supervised Models are Continual Learners , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[106]  Sergey Levine,et al.  CoMPS: Continual Meta Policy Search , 2021, ICLR.

[107]  Marco Ciccone,et al.  Incremental Learning in Semantic Segmentation from Image Labels , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[108]  M. Cord,et al.  DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[109]  Rishabh K. Iyer,et al.  GCR: Gradient Coreset based Replay Buffer Selection for Continual Learning , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[110]  Seyed Iman Mirzadeh,et al.  Wide Neural Networks Forget Less Catastrophically , 2021, ICML.

[111]  Jung-Woo Ha,et al.  Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference , 2021, ICLR.

[112]  Fengqing Zhu,et al.  Online Continual Learning Via Candidates Voting , 2021, 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV).

[113]  Hanjiang Lai,et al.  Towards Better Plasticity-Stability Trade-off in Incremental Learning: A Simple Linear Connector , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[114]  Shafiq R. Joty,et al.  LFPT5: A Unified Framework for Lifelong Few-shot Language Learning Based on Prompt Tuning of T5 , 2021, ICLR.

[115]  Sung Ju Hwang,et al.  Representational Continuity for Unsupervised Continual Learning , 2021, ICLR.

[116]  Afra Feyza Akyurek,et al.  Subspace Regularizers for Few-Shot Class Incremental Learning , 2021, ICLR.

[117]  Stanley Jungkyu Choi,et al.  Towards Continual Knowledge Learning of Language Models , 2021, ICLR.

[118]  S. Calderara,et al.  Continual semi-supervised learning through contrastive interpolation consistency , 2021, Pattern Recognit. Lett..

[119]  Xin Geng,et al.  Learngene: From Open-World to Your Learning Task , 2021, AAAI.

[120]  P. Chaudhari,et al.  Model Zoo: A Growing Brain That Learns Continually , 2021, ICLR.

[121]  Stephen J. Roberts,et al.  Same State, Different Task: Continual Reinforcement Learning without Interference , 2021, AAAI.

[122]  Eunho Yang,et al.  Online Coreset Selection for Rehearsal-based Continual Learning , 2021, ICLR.

[123]  Xinchao Wang,et al.  How Well Does Self-Supervised Pre-Training Perform with Streaming Data? , 2021, ICLR.

[124]  T. Tuytelaars,et al.  New Insights on Reducing Abrupt Representation Change in Online Continual Learning , 2021, International Conference on Learning Representations.

[125]  Cheston Tan,et al.  A Survey of Embodied AI: From Simulators to Research Tasks , 2021, IEEE Transactions on Emerging Topics in Computational Intelligence.

[126]  Hyunwoo J. Kim,et al.  Online Continual Learning in Image Classification: An Empirical Survey , 2021, Neurocomputing.

[127]  Fahad Shahbaz Khan,et al.  Transformers in Vision: A Survey , 2021, ACM Comput. Surv..

[128]  Doina Precup,et al.  Towards Continual Reinforcement Learning: A Review and Perspectives , 2020, J. Artif. Intell. Res..

[129]  Haytham M. Fayek,et al.  Knowledge Capture and Replay for Continual Learning , 2020, 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV).

[130]  S. Scherer,et al.  Lifelong Graph Learning , 2020, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[131]  Fahad Shahbaz Khan,et al.  Incremental Object Detection via Meta-Learning , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[132]  Hang Su,et al.  Triple-Memory Networks: A Brain-Inspired Method for Continual Learning , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[133]  Tinne Tuytelaars,et al.  A Continual Learning Survey: Defying Forgetting in Classification Tasks , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[134]  Frederik Benzing Unifying Importance Based Regularisation Methods for Continual Learning , 2022, AISTATS.

[135]  Aitor Lewkowycz,et al.  Effect of scale on catastrophic forgetting in neural networks , 2022, ICLR.

[136]  Shijin Wang,et al.  Continual Pre-training of Language Models for Math Problem Understanding with Syntax-Aware Memory Network , 2022, ACL.

[137]  Eunwoo Kim,et al.  Helpful or Harmful: Inter-task Association in Continual Learning , 2022, ECCV.

[138]  Jiahuan Zhou,et al.  Balancing Between Forgetting and Acquisition in Incremental Subpopulation Learning , 2022, ECCV.

[139]  S. Biswas,et al.  S3C: Self-Supervised Stochastic Classifiers for Few-Shot Class-Incremental Learning , 2023, ECCV.

[140]  R. French,et al.  Online Task-free Continual Learning with Dynamic Sparse Distributed Memory , 2022, ECCV.

[141]  Qianglong Chen,et al.  Continual Few-shot Intent Detection , 2022, COLING.

[142]  Qiang Qiu,et al.  Continual Learning with Filter Atom Swapping , 2022, ICLR.

[143]  L. Vig,et al.  Prompt Augmented Generative Replay via Supervised Contrastive Learning for Lifelong Intent Detection , 2022, NAACL-HLT.

[144]  Sung Ju Hwang,et al.  Forget-free Continual Learning with Winning Subnetworks , 2022, ICML.

[145]  B. Liu,et al.  Online Continual Learning through Mutual Information Maximization , 2022, ICML.

[146]  Bobak J. Mortazavi,et al.  VariGrow: Variational Architecture Growing for Task-Agnostic Continual Learning based on Bayesian Novelty , 2022, ICML.

[147]  Tim G. J. Rudner,et al.  Continual Learning via Sequential Function-Space Variational Inference , 2023, ICML.

[148]  Eunah Cho,et al.  Overcoming Catastrophic Forgetting During Domain Adaptation of Seq2seq Language Generation , 2022, NAACL.

[149]  Ricardo Henao,et al.  Few-Shot Class-Incremental Learning for Named Entity Recognition , 2022, ACL.

[150]  Md Rifat Arefin,et al.  Foundational Models for Continual Learning: An Empirical Study of Latent Replay , 2022, ArXiv.

[151]  G. Qi,et al.  Pretrained Language Model in Continual Learning: A Comparative Study , 2022, ICLR.

[152]  Guoying Zhao,et al.  Looking Back on Learned Experiences For Class/task Incremental Learning , 2022, ICLR.

[153]  Seyed Iman Mirzadeh,et al.  Efficient Continual Learning Ensembles in Neural Network Subspaces , 2022, ArXiv.

[154]  B. Schiele,et al.  RMM: Reinforced Memory Management for Class-Incremental Learning , 2023, NeurIPS.

[155]  Sanket Vaibhav Mehta,et al.  An Empirical Investigation of the Role of Pre-training in Lifelong Learning , 2021, ArXiv.

[156]  Xi Li,et al.  MgSvF: Multi-Grained Slow versus Fast Framework for Few-Shot Class-Incremental Learning , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[157]  Bing Liu,et al.  Achieving Forgetting Prevention and Knowledge Transfer in Continual Learning , 2021, NeurIPS.

[158]  Massimo Caccia,et al.  Continual Learning via Local Module Composition , 2021, NeurIPS.

[159]  Xiao-Ming Wu,et al.  Overcoming Catastrophic Forgetting in Incremental Few-Shot Learning by Finding Flat Minima , 2021, NeurIPS.

[160]  Mingli Ding,et al.  Bridging Non Co-occurrence with Unlabeled In-the-wild Data for Incremental Object Detection , 2021, NeurIPS.

[161]  Jun Zhu,et al.  AFEC: Active Forgetting of Negative Transfer in Continual Learning , 2021, NeurIPS.

[162]  Pheng-Ann Heng,et al.  Flattening Sharpness for Dynamic Gradient Projection Memory Benefits Continual Learning , 2021, NeurIPS.

[163]  Steven Hoi,et al.  Continual Learning, Fast and Slow , 2021, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[164]  Bohyung Han,et al.  Class-Incremental Learning for Action Recognition in Videos , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[165]  S. Gong,et al.  Striking a Balance between Stability and Plasticity for Class-Incremental Learning , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[166]  Mehrtash Harandi,et al.  Synthesized Feature based Few-Shot Class-Incremental Learning on a Mixture of Subspaces , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[167]  Gunhee Kim,et al.  Continual Learning on Noisy Data Streams via Self-Purified Replay , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[168]  Hossein Rahmani,et al.  Recent Advances of Continual Learning in Computer Vision: An Overview , 2021, ArXiv.

[169]  Gholamreza Haffari,et al.  Total Recall: a Customized Continual Learning Method for Neural Semantic Parsers , 2021, EMNLP.

[170]  Mohammad Rostami,et al.  Detection and Continual Learning of Novel Face Presentation Attacks , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[171]  Jianren Wang,et al.  Wanderlust: Online Continual Object Detection in the Real World , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[172]  Vladlen Koltun,et al.  Online Continual Learning with Natural Distribution Shifts: An Empirical Study with Visual Data , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[173]  Bernt Schiele,et al.  Generalized and Incremental Few-Shot Learning by Explicit Learning and Calibration without Forgetting , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[174]  Michael S. Bernstein,et al.  On the Opportunities and Risks of Foundation Models , 2021, ArXiv.

[175]  Minghui Qiu,et al.  MeLL: Large-scale Extensible User Intent Classification for Dialogue Systems with Meta Lifelong Learning , 2021, KDD.

[176]  Kang Liu,et al.  Lifelong Intent Detection via Multi-Strategy Rebalancing , 2021, ArXiv.

[177]  Jiale Zhou,et al.  An EM Framework for Online Incremental Learning of Semantic Segmentation , 2021, ACM Multimedia.

[178]  Pietro Zanuttigh,et al.  RECALL: Replay-based Continual Learning in Semantic Segmentation , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[179]  Zhou Zhao,et al.  FedSpeech: Federated Text-to-Speech with Continual Learning , 2021, IJCAI.

[180]  Takashi Shibata,et al.  Learning with Selective Forgetting , 2021, IJCAI.

[181]  Eugene Lee,et al.  Few-Shot and Continual Learning with Attentive Independent Mechanisms , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[182]  De-Chuan Zhan,et al.  Co-Transport for Class-Incremental Learning , 2021, ACM Multimedia.

[183]  Ruifeng Xu,et al.  Continual Learning for Task-oriented Dialogue System with Iterative Network Pruning, Expanding and Masking , 2021, ACL.

[184]  Senwei Liang,et al.  AlterSGD: Finding Flat Minima for Continual Learning by Alternative Training , 2021, ArXiv.

[185]  Ling Shao,et al.  Kernel Continual Learning , 2021, ICML.

[186]  Jinwoo Shin,et al.  Co2L: Contrastive Continual Learning , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[187]  Taesup Moon,et al.  SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning , 2021, NeurIPS.

[188]  Hongxia Jin,et al.  Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[189]  Guillaume Hennequin,et al.  Natural continual learning: success is a journey, not (just) a destination , 2021, NeurIPS.

[190]  Zhiyuan Liu,et al.  Pre-Trained Models: Past, Present and Future , 2021, AI Open.

[191]  Julio Hurtado,et al.  Optimizing Reusable Knowledge for Continual Learning via Metalearning , 2021, NeurIPS.

[192]  Aiping Liu,et al.  Image De-raining via Continual Learning , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[193]  Zheng-Jun Zha,et al.  Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[194]  Fei Yin,et al.  Prototype Augmentation and Self-Supervision for Incremental Learning , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[195]  Bing Liu,et al.  Adapting BERT for Continual Learning of a Sequence of Aspect Sentiment Classification Tasks , 2021, NAACL.

[196]  Xiaojun Wan,et al.  Continual Learning for Neural Machine Translation , 2021, NAACL.

[197]  Greg Mori,et al.  Hyper-LifelongGAN: Scalable Lifelong Learning for Image Conditioned Generation , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[198]  Razvan Pascanu,et al.  Continual World: A Robotic Benchmark For Continual Reinforcement Learning , 2021, NeurIPS.

[199]  Cheng Deng,et al.  Class-Incremental Instance Segmentation via Multi-Teacher Networks , 2021, AAAI.

[200]  Yihong Gong,et al.  Few-Shot Class-Incremental Learning via Relation Knowledge Distillation , 2021, AAAI.

[201]  Dong-Wan Choi,et al.  Split-and-Bridge: Adaptable Class Incremental Learning within a Single Neural Network , 2021, AAAI.

[202]  Joost van de Weijer,et al.  ACAE-REMIND for Online Continual Learning with Compressed Feature Replay , 2021, Pattern Recognit. Lett..

[203]  Giuseppe Castellucci,et al.  Continual Learning for Named Entity Recognition , 2021, AAAI.

[204]  Bing Liu,et al.  Continual Learning by Using Information of Each Class Holistically , 2021, AAAI.

[205]  Bing Liu,et al.  Lifelong and Continual Learning Dialogue Systems: Learning during Conversation , 2021, AAAI.

[206]  Dapeng Chen,et al.  Layerwise Optimization by Gradient Decomposition for Continual Learning , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[207]  Ronald Poppe,et al.  Incremental Few-Shot Instance Segmentation , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[208]  Prafulla Dhariwal,et al.  Diffusion Models Beat GANs on Image Synthesis , 2021, NeurIPS.

[209]  Subhankar Ghosh,et al.  Dynamic VAEs with Generative Replay for Continual Zero-shot Learning , 2021, ArXiv.

[210]  Benedikt Pfülb,et al.  Continual Learning with Fully Probabilistic Models , 2021, ArXiv.

[211]  Brian Lester,et al.  The Power of Scale for Parameter-Efficient Prompt Tuning , 2021, EMNLP.

[212]  Bill Yuchen Lin,et al.  Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning , 2021, EMNLP.

[213]  Piotr Koniusz,et al.  On Learning the Geodesic Path for Incremental Learning , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[214]  Tinne Tuytelaars,et al.  Rehearsal revealed: The limits and merits of revisiting samples in continual learning , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[215]  Xuezhi Wang,et al.  Continual Learning for Text Classification with Information Disentanglement Based Regularization , 2021, NAACL.

[216]  Yinghui Xu,et al.  Few-Shot Incremental Learning with Continually Evolved Classifiers , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[217]  Wenpeng Yin,et al.  Incremental Few-shot Text Classification with Multi-round New Classes: Formulation, Dataset and System , 2021, NAACL.

[218]  Tyler L. Hayes,et al.  Replay in Deep Learning: Current Approaches and Missing Biological Elements , 2021, Neural Computation.

[219]  Jihwan Bang,et al.  Rainbow Memory: Continual Learning with a Memory of Diverse Samples , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[220]  Xuming He,et al.  DER: Dynamically Expandable Representation for Class Incremental Learning , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[221]  Vinay P. Namboodiri,et al.  Rectification-based Knowledge Retention for Continual Learning , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[222]  Tyler L. Hayes,et al.  Self-Supervised Training Enhances Online Continual Learning , 2021, BMVC.

[223]  Scott Sanner,et al.  Supervised Contrastive Replay: Revisiting the Nearest Class Mean Classifier in Online Class-Incremental Continual Learning , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[224]  Kaushik Roy,et al.  Gradient Projection Memory for Continual Learning , 2021, ICLR.

[225]  Zongben Xu,et al.  Training Networks in Null Space of Feature Covariance for Continual Learning , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[226]  Orhan Firat,et al.  Towards Continual Learning for Multilingual Machine Translation via Vocabulary Substitution , 2021, NAACL.

[227]  Pietro Zanuttigh,et al.  Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[228]  M. Harandi,et al.  Semantic-aware Knowledge Distillation for Few-Shot Class-Incremental Learning , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[229]  Aaron C. Courville,et al.  Continuous Coordination As a Realistic Scenario for Lifelong Learning , 2021, ICML.

[230]  K. J. Joseph,et al.  Towards Open World Object Detection , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[231]  Chunyan Miao,et al.  Distilling Causal Effect of Data in Class-Incremental Learning , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[232]  Benjamin F. Grewe,et al.  Posterior Meta-Replay for Continual Learning , 2021, NeurIPS.

[233]  Piyush Rai,et al.  Few-Shot Lifelong Learning , 2021, AAAI.

[234]  Ilya Sutskever,et al.  Learning Transferable Visual Models From Natural Language Supervision , 2021, ICML.

[235]  Sungrae Park,et al.  SWAD: Domain Generalization by Seeking Flat Minima , 2021, NeurIPS.

[236]  Gal Chechik,et al.  GP-Tree: A Gaussian Process Classifier for Few-Shot Incremental Learning , 2021, ICML.

[237]  Alan R. Wagner,et al.  EEC: Learning to Encode and Regenerate Images for Continual Learning , 2021, ICLR.

[238]  Guilin Qi,et al.  Curriculum-Meta Learning for Order-Robust Continual Relation Extraction , 2021, AAAI.

[239]  Jun Zhu,et al.  ORDisCo: Effective and Efficient Usage of Incremental Unlabeled Data for Semi-supervised Continual Learning , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[240]  Vinay P. Namboodiri,et al.  Do not Forget to Attend to Uncertainty while Mitigating Catastrophic Forgetting , 2021, 2021 IEEE Winter Conference on Applications of Computer Vision (WACV).

[241]  Bing Liu,et al.  Continual Learning in Task-Oriented Dialogue Systems , 2020, EMNLP.

[242]  Brian C. Lovell,et al.  SID: Incremental Learning for Anchor-Free Object Detection via Selective and Inter-Related Distillation , 2020, Comput. Vis. Image Underst..

[243]  Nanyun Peng,et al.  ECONET: Effective Continual Pretraining of Language Models for Event Temporal Reasoning , 2020, EMNLP.

[244]  Stefano Soatto,et al.  Mixed-Privacy Forgetting in Deep Networks , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[245]  Mohamed Abdelsalam,et al.  IIRC: Incremental Implicitly-Refined Classification , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[246]  Marc'Aurelio Ranzato,et al.  Efficient Continual Learning with Modular Networks and Task-Driven Priors , 2020, ICLR.

[247]  Chong You,et al.  Incremental Learning via Rate Reduction , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[248]  Abhishek Kumar,et al.  Score-Based Generative Modeling through Stochastic Differential Equations , 2020, ICLR.

[249]  Richard E. Turner,et al.  Generalized Variational Continual Learning , 2020, ICLR.

[250]  Matthieu Cord,et al.  PLOP: Learning without Forgetting for Continual Semantic Segmentation , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[251]  B. Schiele,et al.  Adaptive Aggregation Networks for Class-Incremental Learning , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[252]  Seyed Iman Mirzadeh,et al.  Linear Mode Connectivity in Multitask and Continual Learning , 2020, ICLR.

[253]  Trevor Darrell,et al.  Remembering for the Right Reasons: Explanations Reduce Catastrophic Forgetting , 2020, ICLR.

[254]  Ariel Kleiner,et al.  Sharpness-Aware Minimization for Efficiently Improving Generalization , 2020, ICLR.

[255]  Mohammad Rostami,et al.  Unsupervised Model Adaptation for Continual Semantic Segmentation , 2020, AAAI.

[256]  Matthias De Lange,et al.  Continual Prototype Evolution: Learning Online from Non-Stationary Data Streams , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[257]  Scott Sanner,et al.  Online Class-Incremental Continual Learning with Adversarial Shapley Value , 2020, AAAI.

[258]  Ethan Dyer,et al.  Anatomy of Catastrophic Forgetting: Hidden Representations and Task Semantics , 2020, ICLR.

[259]  Ngai-Man Cheung,et al.  InfoMax-GAN: Improved Adversarial Image Generation via Information Maximization and Contrastive Learning , 2020, 2021 IEEE Winter Conference on Applications of Computer Vision (WACV).

[260]  Xiang Ren,et al.  Gradient-based Editing of Memory Examples for Online Task-free Continual Learning , 2020, NeurIPS.

[261]  Taesup Moon,et al.  CPR: Classifier-Projection Regularization for Continual Learning , 2020, ICLR.

[262]  Thang D. Bui,et al.  Variational Auto-Regressive Gaussian Processes for Continual Learning , 2020, ICML.

[263]  Jianping Gou,et al.  Knowledge Distillation: A Survey , 2020, International Journal of Computer Vision.

[264]  Taesup Moon,et al.  SS-IL: Separated Softmax for Incremental Learning , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[265]  Eunho Yang,et al.  Federated Continual Learning with Weighted Inter-client Transfer , 2020, ICML.

[266]  David Lie,et al.  Machine Unlearning , 2019, 2021 IEEE Symposium on Security and Privacy (SP).

[267]  Piyush Rai,et al.  Bayesian Structural Adaptation for Continual Learning , 2019, ICML.

[268]  Pietro Zanuttigh,et al.  Knowledge Distillation for Incremental Learning in Semantic Segmentation , 2019, Comput. Vis. Image Underst..

[269]  Albert Gordo,et al.  Using Hindsight to Anchor Past Knowledge in Continual Learning , 2019, AAAI.

[270]  Evgeny Burnaev,et al.  BooVAE: Boosting Approach for Continual Learning of VAE , 2019, NeurIPS.

[271]  Xu-Yao Zhang,et al.  Class-Incremental Learning via Dual Augmentation , 2021, NeurIPS.

[272]  Peng Yang,et al.  Mitigating Forgetting in Online Continual Learning with Neuron Calibration , 2021, NeurIPS.

[273]  Bing Liu,et al.  BNS: Building Network Structures Dynamically for Continual Learning , 2021, NeurIPS.

[274]  Veselin Stoyanov,et al.  Continual Few-Shot Learning for Text Classification , 2021, EMNLP.

[275]  Christian Henning,et al.  Uncertainty-based out-of-distribution detection requires suitable function space priors , 2021, ArXiv.

[276]  Steven C. H. Hoi,et al.  Contextual Transformation Networks for Online Continual Learning , 2021, ICLR.

[277]  Kevin J Liang,et al.  Continual Learning using a Bayesian Nonparametric Dictionary of Weight Factors , 2021, AISTATS.

[278]  Stephen Lin,et al.  Swin Transformer: Hierarchical Vision Transformer using Shifted Windows , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[279]  Bing Liu,et al.  Continual Learning of a Mixed Sequence of Similar and Dissimilar Tasks , 2021, NeurIPS.

[280]  Megha Nawhal,et al.  Piggyback GAN: Efficient Lifelong Learning for Image Conditioned Generation , 2021, ECCV.

[281]  Magdalena Biesialska,et al.  Continual Lifelong Learning in Natural Language Processing: A Survey , 2020, COLING.

[282]  Jiajun Zhang,et al.  Distill and Replay for Continual Language Learning , 2020, COLING.

[283]  Yi Cai,et al.  A Two-phase Prototypical Network Model for Incremental Few-shot Relation Classification , 2020, COLING.

[284]  Sergey Levine,et al.  Continual Learning of Control Primitives: Skill Discovery via Reset-Games , 2020, NeurIPS.

[285]  Andrei A. Rusu,et al.  Embracing Change: Continual Learning in Deep Neural Networks , 2020, Trends in Cognitive Sciences.

[286]  Yang Feng,et al.  Investigating Catastrophic Forgetting During Continual Training for Neural Machine Translation , 2020, COLING.

[287]  Omer Levy,et al.  The Turking Test: Can Language Models Understand Instructions? , 2020, ArXiv.

[288]  Philip H. S. Torr,et al.  Continual Learning in Low-rank Orthogonal Subspaces , 2020, NeurIPS.

[289]  Barnabás Póczos,et al.  Efficient Meta Lifelong-Learning with Limited Memory , 2020, EMNLP.

[290]  Minlie Huang,et al.  Continual Learning for Natural Language Generation in Task-oriented Dialog Systems , 2020, FINDINGS.

[291]  Vineeth N Balasubramanian,et al.  Meta-Consolidation for Continual Learning , 2020, NeurIPS.

[292]  Mark Collier,et al.  Routing Networks with Co-training for Continual Learning , 2020, ArXiv.

[293]  Gunhee Kim,et al.  Imbalanced Continual Learning with Partitioning Reservoir Sampling , 2020, ECCV.

[294]  Behnam Neyshabur,et al.  What is being transferred in transfer learning? , 2020, NeurIPS.

[295]  Philip H. S. Torr,et al.  GDumb: A Simple Approach that Questions Our Progress in Continual Learning , 2020, ECCV.

[296]  Xiaopeng Hong,et al.  Topology-Preserving Class-Incremental Learning , 2020, ECCV.

[297]  Hava T. Siegelmann,et al.  Brain-inspired replay for continual learning with artificial neural networks , 2020, Nature Communications.

[298]  E. Ricci,et al.  Online Continual Learning under Extreme Memory Constraints , 2020, European Conference on Computer Vision.

[299]  Luc Van Gool,et al.  Reparameterizing Convolutions for Incremental Multi-Task Learning without Task Interference , 2020, ECCV.

[300]  Adrian G. Bors,et al.  Learning latent representations across multiple data domains using Lifelong VAEGAN , 2020, ECCV.

[301]  Eric Eaton,et al.  Lifelong Policy Gradient Learning of Factored Policies for Faster Training Without Forgetting , 2020, NeurIPS.

[302]  Joost van de Weijer,et al.  RATT: Recurrent Attention to Transient Tasks for Continual Image Captioning , 2020, NeurIPS.

[303]  Marie-Francine Moens,et al.  Online Continual Learning from Imbalanced Data , 2020, ICML.

[304]  Joost van de Weijer,et al.  On Class Orderings for Incremental Learning , 2020, ArXiv.

[305]  Sinan Kalkan,et al.  Continual Learning for Affective Robotics: Why, What and How? , 2020, 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN).

[306]  Truyen Tran,et al.  Catastrophic forgetting and mode collapse in GANs , 2020, 2020 International Joint Conference on Neural Networks (IJCNN).

[307]  Yinjun Wu,et al.  DeltaGrad: Rapid retraining of machine learning models , 2020, ICML.

[308]  Ali Farhadi,et al.  Supermasks in Superposition , 2020, NeurIPS.

[309]  Eirikur Agustsson,et al.  High-Fidelity Generative Image Compression , 2020, NeurIPS.

[310]  Sijia Wang,et al.  GAN Memory with No Forgetting , 2020, NeurIPS.

[311]  Seyed Iman Mirzadeh,et al.  Understanding the Role of Training Regimes in Continual Learning , 2020, NeurIPS.

[312]  Tom Diethe,et al.  Optimal Continual Learning has Perfect Memory and is NP-hard , 2020, ICML.

[313]  Jun Li,et al.  Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection , 2020, NeurIPS.

[314]  Quanfu Fan,et al.  Relationship Matters: Relation Guided Knowledge Transfer for Incremental Learning of Object Detectors , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[315]  Christopher Kanan,et al.  Stream-51: Streaming Classification and Novelty Detection from Videos , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[316]  Tao Lin,et al.  Generalized Class Incremental Learning , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[317]  Andreas Krause,et al.  Coresets via Bilevel Optimization for Continual Learning and Streaming , 2020, NeurIPS.

[318]  Mark Chen,et al.  Language Models are Few-Shot Learners , 2020, NeurIPS.

[319]  Botond Cseke,et al.  Continual Learning with Bayesian Neural Networks for Non-Stationary Data , 2020, ICLR.

[320]  Mohammad Emtiyaz Khan,et al.  Continual Deep Learning by Functional Regularisation of Memorable Past , 2020, NeurIPS.

[321]  Matthieu Cord,et al.  PODNet: Pooled Outputs Distillation for Small-Tasks Incremental Learning , 2020, ECCV.

[322]  Hassan Ghasemzadeh,et al.  Dropout as an Implicit Gating Mechanism For Continual Learning , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[323]  Xiaopeng Hong,et al.  Few-Shot Class-Incremental Learning , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[324]  Bogdan Raducanu,et al.  Generative Feature Replay For Class-Incremental Learning , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[325]  Junmo Kim,et al.  Continual Learning With Extended Kronecker-Factored Approximate Curvature , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[326]  Murray Shanahan,et al.  Continual Reinforcement Learning with Multi-Timescale Replay , 2020, ArXiv.

[327]  Simone Calderara,et al.  Dark Experience for General Continual Learning: a Strong, Simple Baseline , 2020, NeurIPS.

[328]  Mehrab N Modi,et al.  The Drosophila Mushroom Body: From Architecture to Algorithm in a Learning Circuit. , 2020, Annual review of neuroscience.

[329]  S. Lazebnik,et al.  Memory-Efficient Incremental Learning Through Feature Adaptation , 2020, ECCV.

[330]  Joost van de Weijer,et al.  Semantic Drift Compensation for Class-Incremental Learning , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[331]  Simone Calderara,et al.  Conditional Channel Gated Networks for Task-Aware Continual Learning , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[332]  Taesup Moon,et al.  Continual Learning with Node-Importance based Adaptive Group Sparse Regularization , 2020, NeurIPS.

[333]  Fengqing Zhu,et al.  Incremental Learning in Online Scenario , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[334]  Fahad Shahbaz Khan,et al.  iTAML: An Incremental Task-Agnostic Meta-learning Approach , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[335]  Trevor Darrell,et al.  Adversarial Continual Learning , 2020, ECCV.

[336]  Hava T. Siegelmann,et al.  A modeling framework for adaptive lifelong learning with transfer and savings through gating in the prefrontal cortex , 2020, Proceedings of the National Academy of Sciences.

[337]  Tao Xiang,et al.  Incremental Few-Shot Object Detection , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[338]  B. Lovell,et al.  Faster ILOD: Incremental Learning for Object Detectors based on Faster RCNN , 2020, Pattern Recognit. Lett..

[339]  David Vázquez,et al.  Online Fast Adaptation and Knowledge Accumulation (OSAKA): a New Approach to Continual Learning , 2020, NeurIPS.

[340]  L. Carin,et al.  On Leveraging Pretrained GANs for Generation with Limited Data , 2020, ICML.

[341]  Bernt Schiele,et al.  Mnemonics Training: Multi-Class Incremental Learning Without Forgetting , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[342]  Joel Lehman,et al.  Learning to Continually Learn , 2020, ECAI.

[343]  Junmo Kim,et al.  Residual Continual Learning , 2020, AAAI.

[344]  Stefano Soatto,et al.  Incremental Meta-Learning via Indirect Discriminant Alignment , 2020, 2002.04162.

[345]  B. Caputo,et al.  Modeling the Background for Incremental Learning in Semantic Segmentation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[346]  Adrian Popescu,et al.  ScaIL: Classifier Weights Scaling for Class Incremental Learning , 2020, 2020 IEEE Winter Conference on Applications of Computer Vision (WACV).

[347]  Junsoo Ha,et al.  A Neural Dirichlet Process Mixture Model for Task-Free Continual Learning , 2020, ICLR.

[348]  Leonidas Guibas,et al.  Side-Tuning: A Baseline for Network Adaptation via Additive Side Networks , 2019, ECCV.

[349]  Derek Hoiem,et al.  Dreaming to Distill: Data-Free Knowledge Transfer via DeepInversion , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[350]  Richard E. Turner,et al.  Continual Learning with Adaptive Weights (CLAW) , 2019, ICLR.

[351]  Joelle Pineau,et al.  Online Learned Continual Compression with Adaptive Quantization Modules , 2019, ICML.

[352]  Shutao Xia,et al.  Maintaining Discrimination and Fairness in Class Incremental Learning , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[353]  Stefano Soatto,et al.  Eternal Sunshine of the Spotless Net: Selective Forgetting in Deep Networks , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[354]  Mehrdad Farajtabar,et al.  Orthogonal Gradient Descent for Continual Learning , 2019, AISTATS.

[355]  Tyler L. Hayes,et al.  REMIND Your Neural Network to Prevent Catastrophic Forgetting , 2019, ECCV.

[356]  Hung-yi Lee,et al.  LAMOL: LAnguage MOdeling for Lifelong Language Learning , 2019, ICLR.

[357]  Inyoung Paik,et al.  Overcoming Catastrophic Forgetting by Neuron-level Plasticity Control , 2019, AAAI.

[358]  Hao Tian,et al.  ERNIE 2.0: A Continual Pre-training Framework for Language Understanding , 2019, AAAI.

[359]  Natalia Díaz Rodríguez,et al.  Continual learning for robotics: Definition, framework, learning strategies, opportunities and challenges , 2019, Inf. Fusion.

[360]  Mohammad Rostami,et al.  Generative Continual Concept Learning , 2019, AAAI.

[361]  Trevor Darrell,et al.  Uncertainty-guided Continual Learning with Bayesian Neural Networks , 2019, ICLR.

[362]  Benjamin F. Grewe,et al.  Continual learning with hypernetworks , 2019, ICLR.

[363]  E. Culurciello,et al.  Continual Reinforcement Learning in 3D Non-stationary Environments , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[364]  Larry P. Heck,et al.  Class-incremental Learning via Deep Model Consolidation , 2019, 2020 IEEE Winter Conference on Applications of Computer Vision (WACV).

[365]  Sung Ju Hwang,et al.  Scalable and Order-robust Continual Learning with Additive Parameter Decomposition , 2019, ICLR.

[366]  Yee Whye Teh,et al.  Functional Regularisation for Continual Learning using Gaussian Processes , 2019, ICLR.

[367]  Anit Kumar Sahu,et al.  Federated Optimization in Heterogeneous Networks , 2018, MLSys.

[368]  Ross B. Girshick,et al.  Focal Loss for Dense Object Detection , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[369]  Min Sun,et al.  Mitigating Forgetting in Online Continual Learning via Instance-Aware Parameterization , 2020, NeurIPS.

[370]  Gunshi Gupta,et al.  Look-ahead Meta Learning for Continual Learning , 2020, NeurIPS.

[371]  Lawrence Carin,et al.  Calibrating CNNs for Lifelong Learning , 2020, NeurIPS.

[372]  Hongxia Jin,et al.  A Progressive Model to Enable Continual Learning for Semantic Slot Filling , 2019, EMNLP.

[373]  Yi-Ming Chan,et al.  Compacting, Picking and Growing for Unforgetting Continual Learning , 2019, NeurIPS.

[374]  Yee Whye Teh,et al.  Continual Unsupervised Representation Learning , 2019, NeurIPS.

[375]  Ying Fu,et al.  Incremental Learning Using Conditional Adversarial Networks , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[376]  Adrian Popescu,et al.  IL2M: Class Incremental Learning With Dual Memory , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[377]  Pieter Abbeel,et al.  Adaptive Online Planning for Continual Lifelong Learning , 2019, ArXiv.

[378]  Tinne Tuytelaars,et al.  Online Continual Learning with Maximally Interfered Retrieval , 2019, ArXiv.

[379]  Bohyung Han,et al.  Continual Learning by Asymmetric Loss Approximation With Single-Side Overestimation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[380]  Furu Wei,et al.  Visualizing and Understanding the Effectiveness of BERT , 2019, EMNLP.

[381]  Pietro Zanuttigh,et al.  Incremental Learning Techniques for Semantic Segmentation , 2019, 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).

[382]  Megha Nawhal,et al.  Lifelong GAN: Continual Learning for Conditional Image Generation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[383]  Qi Tian,et al.  An End-to-End Architecture for Class-Incremental Object Detection with Knowledge Distillation , 2019, 2019 IEEE International Conference on Multimedia and Expo (ICME).

[384]  Mei-Yuh Hwang,et al.  Incremental Learning from Scratch for Task-Oriented Dialogue Systems , 2019, ACL.

[385]  Raffaella Bernardi,et al.  Psycholinguistics Meets Continual Learning: Measuring Catastrophic Forgetting in Visual Question Answering , 2019, ACL.

[386]  Ling Shao,et al.  Random Path Selection for Incremental Learning , 2019, ArXiv.

[387]  Dahua Lin,et al.  Learning a Unified Classifier Incrementally via Rebalancing , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[388]  Sebastian Ruder,et al.  Episodic Memory in Lifelong Language Learning , 2019, NeurIPS.

[389]  Yandong Guo,et al.  Large Scale Incremental Learning , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[390]  Martha White,et al.  Meta-Learning Representations for Continual Learning , 2019, NeurIPS.

[391]  Taesup Moon,et al.  Uncertainty-based Continual Learning with Adaptive Regularization , 2019, NeurIPS.

[392]  Richard E. Turner,et al.  Improving and Understanding Variational Continual Learning , 2019, ArXiv.

[393]  Tianlin Liu,et al.  Continual Learning for Sentence Representations Using Conceptors , 2019, NAACL.

[394]  Xingyi Zhou,et al.  Objects as Points , 2019, ArXiv.

[395]  Andreas S. Tolias,et al.  Three scenarios for continual learning , 2019, ArXiv.

[396]  Patrick Jähnichen,et al.  Learning to Remember: A Synaptic Plasticity Driven Framework for Continual Learning , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[397]  Richard Socher,et al.  Learn to Grow: A Continual Structure Learning Framework for Overcoming Catastrophic Forgetting , 2019, ICML.

[398]  Kibok Lee,et al.  Overcoming Catastrophic Forgetting With Unlabeled Data in the Wild , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[399]  Shalini Ghosh,et al.  RILOD: near real-time incremental learning for object detection at the edge , 2019, SEC.

[400]  Yoshua Bengio,et al.  Gradient based sample selection for online continual learning , 2019, NeurIPS.

[401]  Mohammad Rostami,et al.  Complementary Learning for Overcoming Catastrophic Forgetting Using Experience Replay , 2019, IJCAI.

[402]  Kyunghyun Cho,et al.  Continual Learning via Neural Pruning , 2019, ArXiv.

[403]  Torben Ott,et al.  Dopamine and Cognitive Control in Prefrontal Cortex , 2019, Trends in Cognitive Sciences.

[404]  Marc'Aurelio Ranzato,et al.  On Tiny Episodic Memories in Continual Learning , 2019 .

[405]  Mona Attariyan,et al.  Parameter-Efficient Transfer Learning for NLP , 2019, ICML.

[406]  N. Alex Cayco-Gajic,et al.  Re-evaluating Circuit Mechanisms Underlying Pattern Separation , 2019, Neuron.

[407]  Murray Shanahan,et al.  Policy Consolidation for Continual Reinforcement Learning , 2019, ICML.

[408]  Thomas L. Griffiths,et al.  Reconciling meta-learning and continual learning with online mixtures of tasks , 2018, NeurIPS.

[409]  David Rolnick,et al.  Experience Replay for Continual Learning , 2018, NeurIPS.

[410]  Rama Chellappa,et al.  Learning Without Memorizing , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[411]  Shan Yu,et al.  Continual learning of context-dependent processing in neural networks , 2018, Nature Machine Intelligence.

[412]  Marc'Aurelio Ranzato,et al.  Efficient Lifelong Learning with A-GEM , 2018, ICLR.

[413]  Gerald Tesauro,et al.  Learning to Learn without Forgetting By Maximizing Transfer and Minimizing Interference , 2018, ICLR.

[414]  Bing Liu,et al.  Overcoming Catastrophic Forgetting for Continual Learning via Model Adaptation , 2018, ICLR.

[415]  Stefan Wermter,et al.  Continual Lifelong Learning with Neural Networks: A Review , 2018, Neural Networks.

[416]  Djallel Bouneffouf,et al.  Scalable Recollections for Continual Lifelong Learning , 2017, AAAI.

[417]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[418]  Segundo Jose Guzman,et al.  Parvalbumin+ interneurons obey unique connectivity rules and establish a powerful lateral-inhibition microcircuit in dentate gyrus , 2018, Nature Communications.

[419]  Yen-Cheng Liu,et al.  Re-evaluating Continual Learning Scenarios: A Categorization and Case for Strong Baselines , 2018, ArXiv.

[420]  Dahua Lin,et al.  Lifelong Learning via Progressive Distillation and Retrospection , 2018, ECCV.

[421]  Tom Eccles,et al.  Life-Long Disentangled Representation Learning with Cross-Domain Latent Homologies , 2018, NeurIPS.

[422]  Cordelia Schmid,et al.  End-to-End Incremental Learning , 2018, ECCV.

[423]  Yee Whye Teh,et al.  Progress & Compress: A scalable framework for continual learning , 2018, ICML.

[424]  Zhanxing Zhu,et al.  Reinforced Continual Learning , 2018, NeurIPS.

[425]  David Barber,et al.  Online Structured Laplace Approximations For Overcoming Catastrophic Forgetting , 2018, NeurIPS.

[426]  Y. Zhong,et al.  Active Protection: Learning-Activated Raf/MAPK Activity Protects Labile Memory from Rac1-Independent Forgetting , 2018, Neuron.

[427]  Andrew Gordon Wilson,et al.  Averaging Weights Leads to Wider Optima and Better Generalization , 2018, UAI.

[428]  David Isele,et al.  Selective Experience Replay for Lifelong Learning , 2018, AAAI.

[429]  Andrew Gordon Wilson,et al.  Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs , 2018, NeurIPS.

[430]  Murray Shanahan,et al.  Continual Reinforcement Learning with Complex Synapses , 2018, ICML.

[431]  Joost van de Weijer,et al.  Rotate your Networks: Better Weight Consolidation and Less Catastrophic Forgetting , 2018, 2018 24th International Conference on Pattern Recognition (ICPR).

[432]  Philip H. S. Torr,et al.  Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence , 2018, ECCV.

[433]  Svetlana Lazebnik,et al.  Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights , 2018, ECCV.

[434]  Alexandros Karatzoglou,et al.  Overcoming Catastrophic Forgetting with Hard Attention to the Task , 2018 .

[435]  Ronald Kemker,et al.  FearNet: Brain-Inspired Model for Incremental Learning , 2017, ICLR.

[436]  Marcus Rohrbach,et al.  Memory Aware Synapses: Learning what (not) to forget , 2017, ECCV.

[437]  Svetlana Lazebnik,et al.  PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[438]  Richard E. Turner,et al.  Variational Continual Learning , 2017, ICLR.

[439]  Hongyi Zhang,et al.  mixup: Beyond Empirical Risk Minimization , 2017, ICLR.

[440]  Aaron C. Courville,et al.  FiLM: Visual Reasoning with a General Conditioning Layer , 2017, AAAI.

[441]  Sung Ju Hwang,et al.  Lifelong Learning with Dynamically Expandable Networks , 2017, ICLR.

[442]  Derek Hoiem,et al.  Learning without Forgetting , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[443]  Bogdan Raducanu,et al.  Memory Replay GANs: Learning to Generate New Categories without Forgetting , 2018, NeurIPS.

[444]  Shiguang Shan,et al.  Exemplar-Supported Generative Reproduction for Class Incremental Learning , 2018, BMVC.

[445]  Oriol Vinyals,et al.  Neural Discrete Representation Learning , 2017, NIPS.

[446]  Cordelia Schmid,et al.  Incremental Learning of Object Detectors without Catastrophic Forgetting , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[447]  Kaiming He,et al.  Focal Loss for Dense Object Detection , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[448]  H. Kazama,et al.  Origins of Cell-Type-Specific Olfactory Processing in the Drosophila Mushroom Body Circuit , 2017, Neuron.

[449]  Blake A. Richards,et al.  The Persistence and Transience of Memory , 2017, Neuron.

[450]  Yoshua Bengio,et al.  A Closer Look at Memorization in Deep Networks , 2017, ICML.

[451]  Marc'Aurelio Ranzato,et al.  Gradient Episodic Memory for Continual Learning , 2017, NIPS.

[452]  Han Liu,et al.  Continual Learning in Generative Adversarial Nets , 2017, ArXiv.

[453]  Davide Maltoni,et al.  CORe50: a New Dataset and Benchmark for Continuous Object Recognition , 2017, CoRL.

[454]  Jiwon Kim,et al.  Continual Learning with Deep Generative Replay , 2017, NIPS.

[455]  Matthew B. Blaschko,et al.  Encoder Based Lifelong Learning , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[456]  Luca Benini,et al.  Soft-to-Hard Vector Quantization for End-to-End Learning Compressible Representations , 2017, NIPS.

[457]  Andrew McCallum,et al.  Active Bias: Training More Accurate Neural Networks by Emphasizing High Variance Samples , 2017, NIPS.

[458]  Byoung-Tak Zhang,et al.  Overcoming Catastrophic Forgetting by Incremental Moment Matching , 2017, NIPS.

[459]  Surya Ganguli,et al.  Continual Learning Through Synaptic Intelligence , 2017, ICML.

[460]  Sergey Levine,et al.  Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks , 2017, ICML.

[461]  Chrisantha Fernando,et al.  PathNet: Evolution Channels Gradient Descent in Super Neural Networks , 2017, ArXiv.

[462]  Razvan Pascanu,et al.  Overcoming catastrophic forgetting in neural networks , 2016, Proceedings of the National Academy of Sciences.

[463]  Christoph H. Lampert,et al.  iCaRL: Incremental Classifier and Representation Learning , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[464]  Tinne Tuytelaars,et al.  Expert Gate: Lifelong Learning with a Network of Experts , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[465]  Jorge Nocedal,et al.  On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima , 2016, ICLR.

[466]  Shie Mannor,et al.  A Deep Hierarchical Approach to Lifelong Learning in Minecraft , 2016, AAAI.

[467]  Blaise Agüera y Arcas,et al.  Communication-Efficient Learning of Deep Networks from Decentralized Data , 2016, AISTATS.

[468]  Bing Liu,et al.  Lifelong machine learning: a paradigm for continuous learning , 2017, Frontiers of Computer Science.

[469]  Yoshinori Aso,et al.  Dopaminergic neurons write and update memories with cell-type-specific rules , 2016, eLife.

[470]  James L. McClelland,et al.  What Learning Systems do Intelligent Agents Need? Complementary Learning Systems Theory Updated , 2016, Trends in Cognitive Sciences.

[471]  Jing He,et al.  Inability to activate Rac1-dependent forgetting contributes to behavioral inflexibility in mutants of multiple autism-risk genes , 2016, Proceedings of the National Academy of Sciences.

[472]  S. Waddell Neural Plasticity: Dopamine Tunes the Mushroom Body Output Network , 2016, Current Biology.

[473]  Raphael Cohn,et al.  Coordinated and Compartmentalized Neuromodulation Shapes Sensory Processing in Drosophila , 2015, Cell.

[474]  Amanda L. Loshbaugh,et al.  Labelling and optical erasure of synaptic memory traces in the motor cortex , 2015, Nature.

[475]  E. Kandel,et al.  Structural Components of Synaptic Plasticity and Memory Consolidation. , 2015, Cold Spring Harbor perspectives in biology.

[476]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[477]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[478]  Roger B. Grosse,et al.  Optimizing Neural Networks with Kronecker-factored Approximate Curvature , 2015, ICML.

[479]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[480]  G. Rubin,et al.  Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila , 2014, eLife.

[481]  Christoph H. Lampert,et al.  A PAC-Bayesian bound for Lifelong Learning , 2013, ICML.

[482]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[483]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[484]  Ben Taskar,et al.  Determinantal Point Processes for Machine Learning , 2012, Found. Trends Mach. Learn..

[485]  Margaret F. Carr,et al.  Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval , 2011, Nature Neuroscience.

[486]  W. Gan,et al.  Stably maintained dendritic spines are associated with lifelong memories , 2009, Nature.

[487]  Matthew A. Wilson,et al.  Hippocampal Replay of Extended Experience , 2009, Neuron.

[488]  W. Abraham Metaplasticity: tuning synapses and networks for plasticity , 2008, Nature Reviews Neuroscience.

[489]  Alison L. Barth,et al.  Ongoing in Vivo Experience Triggers Synaptic Metaplasticity in the Neocortex , 2008, Science.

[490]  Vikrant Kapoor,et al.  Activity-dependent gating of lateral inhibition in the mouse olfactory bulb , 2008, Nature Neuroscience.

[491]  P. Frankland,et al.  The organization of recent and remote memories , 2005, Nature Reviews Neuroscience.

[492]  Y. Kuniyoshi,et al.  Embodied Artificial Intelligence , 2004, Lecture Notes in Computer Science.

[493]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[494]  K. Doya Complementary roles of basal ganglia and cerebellum in learning and motor control , 2000, Current Opinion in Neurobiology.

[495]  Kenji Doya,et al.  What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? , 1999, Neural Networks.

[496]  Stan Franklin,et al.  Autonomous Agents as Embodied Ai , 1997, Cybern. Syst..

[497]  Jürgen Schmidhuber,et al.  Flat Minima , 1997, Neural Computation.

[498]  M. Bear,et al.  Metaplasticity: the plasticity of synaptic plasticity , 1996, Trends in Neurosciences.

[499]  James L. McClelland,et al.  Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. , 1995, Psychological review.

[500]  Geoffrey E. Hinton,et al.  Adaptive Mixtures of Local Experts , 1991, Neural Computation.

[501]  Michael McCloskey,et al.  Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem , 1989 .

[502]  Jeffrey Scott Vitter,et al.  Random sampling with a reservoir , 1985, TOMS.