Algorithmic motion planning

Motion planning is a fundamental problem in robotics. It comes in a variety of forms, but the simplest version is as follows. We are given a robot system B, which may consist of several rigid objects attached to each other through various joints, hinges, and links, or moving independently, and a 2D or 3D environment V cluttered with obstacles. We assume that the shape and location of the obstacles and the shape of B are known to the planning system. Given an initial placement Z1 and a final placement Z2 of B, we wish to determine whether there exists a collisionavoiding motion of B from Z1 to Z2, and, if so, to plan such a motion. In this simplified and purely geometric setup, we ignore issues such as incomplete information, nonholonomic constraints, control issues related to inaccuracies in sensing and motion, nonstationary obstacles, optimality of the planned motion, and so on. Since the early 1980s, motion planning has been an intensive area of study in robotics and computational geometry. In this chapter we will focus on algorithmic motion planning, emphasizing theoretical algorithmic analysis of the problem and seeking worst-case asymptotic bounds, and only mention briefly practical heuristic approaches to the problem. The majority of this chapter is devoted to the simplified version of motion planning, as stated above. Section 51.1 presents general techniques and lower bounds. Section 51.2 considers efficient solutions to a variety of specific moving systems with a small number of degrees of freedom. These efficient solutions exploit various sophisticated methods in computational and combinatorial geometry related to arrangements of curves and surfaces (Chapter 30). Section 51.3 then briefly discusses various extensions of the motion planning problem such as computing optimal paths with respect to various quality measures, computing the path of a tethered robot, incorporating uncertainty, moving obstacles, and more.

[1]  Daniel Vallejo,et al.  OBPRM: an obstacle-based PRM for 3D workspaces , 1998 .

[2]  Baruch Schieber,et al.  Navigating in unfamiliar geometric terrain , 1991, STOC '91.

[3]  Timothy M. Chan,et al.  The complexity of a single face of a minkowski sum , 1995, CCCG.

[4]  Kurt Mehlhorn,et al.  Approximate motion planning and the complexity of the boundary of the union of simple geometric figures , 2005, Algorithmica.

[5]  Erik D. Demaine,et al.  Online searching with turn cost , 2004, Theor. Comput. Sci..

[6]  Micha Sharir,et al.  A near-quadratic algorithm for planning the motion of a polygon in a polygonal environment , 1996, Discret. Comput. Geom..

[7]  Bruce Randall Donald,et al.  On the complexity of kinodynamic planning , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[8]  Sivan Toledo,et al.  On critical orientations in the kedem-sharir motion planning algorithm , 1997, CCCG.

[9]  Jean-Daniel Boissonnat,et al.  A practical exact motion planning algorithm for polygonal objects amidst polygonal obstacles , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[10]  O. Faugeras,et al.  A 3D World Model Builder with a Mobile Robot , 1992 .

[11]  Micha Sharir,et al.  Arrangements and their applications in robotics: recent developments , 1995 .

[12]  Klara Kedem,et al.  A Convex Polygon Among Polygonal Obstacles: Placement and High-clearance Motion , 1993, Comput. Geom..

[13]  Joseph O'Rourke,et al.  Lower bounds on moving a ladder in two and three dimensions , 1988, Discret. Comput. Geom..

[14]  Saugata Basu The Combinatorial and Topological Complexity of a Single Cell , 2003, Discret. Comput. Geom..

[15]  Micha Sharir,et al.  Efficient generation of k-directional assembly sequences , 1996, SODA '96.

[16]  Yijie Han,et al.  Shortest paths on a polyhedron , 1990, SCG '90.

[17]  Sivan Toledo,et al.  Extremal polygon containment problems , 1991, SCG '91.

[18]  Hongyan Wang,et al.  The complexity of the two dimensional curvature-constrained shortest-path problem , 1998 .

[19]  B. Aronov Motion Planning for Multiple Robots , 1999 .

[20]  Pankaj K. Agarwal,et al.  Polygon decomposition for efficient construction of Minkowski sums , 2000, Comput. Geom..

[21]  Sukhan Lee,et al.  Computer-Aided Mechanical Assembly Planning , 1991 .

[22]  J. Schwartz,et al.  On the Complexity of Motion Planning for Multiple Independent Objects; PSPACE- Hardness of the "Warehouseman's Problem" , 1984 .

[23]  J. Reif Complexity of the Generalized Mover's Problem. , 1985 .

[24]  Micha Sharir,et al.  Three dimensional euclidean Voronoi diagrams of lines with a fixed number of orientations , 2002, SCG '02.

[25]  Mark de Berg,et al.  Models and Motion Planning , 1998, SWAT.

[26]  Jean-Paul Laumond,et al.  Robot Motion Planning and Control , 1998 .

[27]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[28]  Micha Sharir,et al.  On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles , 1986, Discret. Comput. Geom..

[29]  John F. Canny,et al.  New lower bound techniques for robot motion planning problems , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[30]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[31]  John Hershberger,et al.  Efficiently Planning Compliant Motion in the Plane , 1996, SIAM J. Comput..

[32]  Steven M. LaValle,et al.  Rapidly-Exploring Random Trees: Progress and Prospects , 2000 .

[33]  Chee-Keng Yap,et al.  Combinatorial complexity of translating a box in polyhedral 3-space , 1993, SCG '93.

[34]  Jur P. van den Berg,et al.  The visibility--voronoi complex and its applications , 2005, EuroCG.

[35]  Ron Wein Exact and Efficient Construction of Planar Minkowski Sums Using the Convolution Method , 2006, ESA.

[36]  Erik D. Demaine,et al.  PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation , 2002, Theor. Comput. Sci..

[37]  Lydia E. Kavraki,et al.  Partitioning a Planar Assembly Into Two Connected Parts is NP-Complete , 1995, Inf. Process. Lett..

[38]  John F. Canny,et al.  An exact algorithm for kinodynamic planning in the plane , 1991, Discret. Comput. Geom..

[39]  Vladimir J. Lumelsky,et al.  Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape , 1987, Algorithmica.

[40]  Bruce Randall Donald The complexity of planar compliant motion planning under uncertainty , 1988, SCG '88.

[41]  Kurt Mehlhorn,et al.  The LEDA Platform of Combinatorial and Geometric Computing , 1997, ICALP.

[42]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[43]  Ming C. Lin,et al.  Collision Detection between Geometric Models: A Survey , 1998 .

[44]  Mark H. Overmars,et al.  An Effective Framework for Path Planning Amidst Movable Obstacles , 2006, WAFR.

[45]  Subhash Suri,et al.  An Optimal Algorithm for Euclidean Shortest Paths in the Plane , 1999, SIAM J. Comput..

[46]  J. Canny,et al.  Nonholonomic Motion Planning , 1992 .

[47]  Tetsuo Asano,et al.  d1-optimal motion for a rod (extended abstract) , 1996, SCG '96.

[48]  Leonidas J. Guibas,et al.  The Robot Localization Problem , 1995, SIAM J. Comput..

[49]  Mark H. Overmars,et al.  The Complexity of the Free Space for a Robot Moving Amidst Fat Obstacles , 1993, Comput. Geom..

[50]  Micha Sharir,et al.  Arrangements of surfaces in higher dimensions , 1999 .

[51]  Uri Zwick,et al.  SOKOBAN and other motion planning problems , 1999, Comput. Geom..

[52]  John E. Hopcroft,et al.  On the movement of robot arms in 2-dimensional bounded regions , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[53]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[54]  Amos Fiat,et al.  On-Line Navigation in a Room , 1992, SODA.

[55]  Chee-Keng Yap,et al.  AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments , 1987, Discret. Comput. Geom..

[56]  Micha Sharir,et al.  Pipes, Cigars, and Kreplach: the Union of Minkowski Sums in Three Dimensions , 1999, SCG '99.

[57]  Gordon T. Wilfong Motion planning in the presence of movable obstacles , 1988, SCG '88.

[58]  Micha Sharir,et al.  Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.

[59]  Leonidas J. Guibas,et al.  Computing a face in an arrangement of line segments , 1991, SODA '91.

[60]  Micha Sharir,et al.  Coordinated motion planning for two independent robots , 1991, SCG '88.

[61]  John E. Hopcroft,et al.  Movement Problems for 2-Dimensional Linkages , 1984, SIAM J. Comput..

[62]  Micha Sharir,et al.  An Optimal-Time Algorithm for Shortest Paths on a Convex Polytope in Three Dimensions , 2006, SCG '06.

[63]  Micha Sharir,et al.  Approximating shortest paths on a convex polytope in three dimensions , 1997, JACM.

[64]  Micha Sharir,et al.  Castles in the air revisited , 1992, SCG '92.

[65]  Micha Sharir,et al.  A new efficient motion-planning algorithm for a rod in polygonal space , 1986, SCG '86.

[66]  Micha Sharir,et al.  Largest Placement of One Convex Polygon Inside Another , 1998, Discret. Comput. Geom..

[67]  Jörg-Rüdiger Sack,et al.  Approximating weighted shortest paths on polyhedral surfaces , 1997, SCG '97.

[68]  Yoram Koren,et al.  Potential field methods and their inherent limitations for mobile robot navigation , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[69]  Rajeev Motwani,et al.  Path Planning in Expansive Configuration Spaces , 1999, Int. J. Comput. Geom. Appl..

[70]  S. Basu,et al.  COMPUTING ROADMAPS OF SEMI-ALGEBRAIC SETS ON A VARIETY , 1999 .

[71]  Micha Sharir,et al.  Algorithmic motion planning in robotics , 1991, Computer.

[72]  Chee-Keng Yap,et al.  A "Retraction" Method for Planning the Motion of a Disc , 1985, J. Algorithms.

[73]  Mark de Berg,et al.  Motion Planning in Environments with Low Obstacle Density , 1998, Discret. Comput. Geom..

[74]  Jean-Claude Latombe,et al.  Motion planning in the presence of moving obstacles , 1992 .

[75]  Micha Sharir,et al.  Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams , 2016, Discret. Comput. Geom..

[76]  Howie Choset,et al.  Coverage for robotics – A survey of recent results , 2001, Annals of Mathematics and Artificial Intelligence.

[77]  Russell H. Taylor,et al.  Automatic Synthesis of Fine-Motion Strategies for Robots , 1984 .

[78]  Micha Sharir,et al.  Robot motion planning , 1995 .

[79]  Mark de Berg,et al.  Computing and verifying depth orders , 1992, SCG '92.

[80]  Chee Yap,et al.  Algorithmic motion planning , 1987 .

[81]  Yan Ke,et al.  Moving a ladder in three dimensions: upper and lower bounds , 1987, SCG '87.

[82]  Peter Cheeseman,et al.  On the Representation and Estimation of Spatial Uncertainty , 1986 .

[83]  Micha Sharir,et al.  A Survey of Motion Planning and Related Geometric Algorithms , 1988, Artificial Intelligence.

[84]  Subhash Suri,et al.  Curvature-Constrained Shortest Paths in a Convex Polygon , 2002, SIAM J. Comput..

[85]  Mark de Berg,et al.  On lazy randomized incremental construction , 1994, STOC '94.

[86]  Micha Sharir,et al.  Planning, geometry, and complexity of robot motion , 1986 .

[87]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[88]  Micha Sharir,et al.  An Efficient and Simple Motion Planning Algorithm for a Ladder Amidst Polygonal Barriers , 1987, J. Algorithms.

[89]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[90]  Jean-Claude Latombe,et al.  A general framework for assembly planning: the motion space approach , 1998, SCG '98.

[91]  Sergey Bereg,et al.  Curvature-bounded traversals of narrow corridors , 2005, Symposium on Computational Geometry.

[92]  O. Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[93]  Micha Sharir,et al.  Vertical Decomposition of a Single Cell in a Three-Dimensional Arrangement of Surfaces , 1997, Discret. Comput. Geom..

[94]  Amos Fiat,et al.  Randomized robot navigation algorithms , 1996, SODA '96.

[95]  Dan Halperin,et al.  Exact and efficient construction of Minkowski sums of convex polyhedra with applications , 2006, Comput. Aided Des..

[96]  Jean-Claude Latombe,et al.  Geometric Reasoning About Mechanical Assembly , 1994, Artif. Intell..

[97]  Micha Sharir,et al.  Generalized Voronoi diagrams for a ladder: II. Efficient construction of the diagram , 2018, Algorithmica.

[98]  Vladimir J. Lumelsky,et al.  Motion planning in R3 for multiple tethered robots , 1999, IEEE Trans. Robotics Autom..

[99]  S. LaValle,et al.  Motion Planning , 2008, Springer Handbook of Robotics.

[100]  Amy J. Briggs An efficient algorithm for one-step planar compliant motion planning with uncertainty , 1992, Algorithmica.

[101]  Gert Vegter,et al.  The Visibility Diagram: a Data Structure for Visibility Problems and Motion Planning , 1990, Scandinavian Workshop on Algorithm Theory.

[102]  Vladimir J. Lumelsky,et al.  The ties that bind: motion planning for multiple tethered robots , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[103]  Mark H. Overmars,et al.  Efficient motion planning for an L-shaped object , 1989, SCG '89.

[104]  Micha Sharir,et al.  Almost tight upper bounds for the single cell and zone problems in three dimensions , 1994, SCG '94.

[105]  Micha Sharir,et al.  Fat Triangles Determine Linearly Many Holes , 1994, SIAM J. Comput..

[106]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[107]  Paul G. Spirakis,et al.  Strong NP-Hardness of Moving Many Discs , 1984, Inf. Process. Lett..

[108]  Micha Sharir,et al.  On Translational Motion Planning of a Convex Polyhedron in 3-Space , 1997, SIAM J. Comput..

[109]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[110]  Vladlen Koltun,et al.  Pianos are not flat: rigid motion planning in three dimensions , 2005, SODA '05.

[111]  Leonidas J. Guibas,et al.  On the general motion-planning problem with two degrees of freedom , 2015, SCG '88.

[112]  J. Schwartz,et al.  On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds , 1983 .

[113]  Micha Sharir,et al.  An efficient motion-planning algorithm for a convex polygonal object in two-dimensional polygonal space , 1990, Discret. Comput. Geom..

[114]  Dan Halperin,et al.  Robust Geometric Computing in Motion , 2002, Int. J. Robotics Res..

[115]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[116]  Micha Sharir,et al.  Motion Planning for a Convex Polygon in a Polygonal Environment , 1999, Discret. Comput. Geom..

[117]  Chee-Keng Yap,et al.  On-line motion planning: Case of a planar rod , 2015, Annals of Mathematics and Artificial Intelligence.

[118]  Pankaj K. Agarwal,et al.  Approximating shortest paths on a nonconvex polyhedron , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.