Computational Complexity of Proper Equilibrium

We study the computational complexity of proper equilibrium in finite games and prove the following results. First, for two-player games in strategic form we show that the task of simply verifying the proper equilibrium conditions of a given pure Nash equilibrium is NP-complete. Next, for n -player games in strategic form we show that the task of computing an approximation of a proper equilibrium is FIXPa-complete. Finally, for n -player polymatrix games we show that the task of computing a symbolic proper equilibrium is PPAD-complete.

[1]  Kristoffer Arnsfelt Hansen,et al.  The Complexity of Approximating a Trembling Hand Perfect Equilibrium of a Multi-player Game in Strategic Form , 2014, SAGT.

[2]  Kristoffer Arnsfelt Hansen The Real Computational Complexity of Minmax Value and Equilibrium Refinements in Multi-player Games , 2018, Theory of Computing Systems.

[3]  Richard W. Cottle,et al.  Linear Complementarity Problem , 2009, Encyclopedia of Optimization.

[4]  D. Koller,et al.  Efficient Computation of Equilibria for Extensive Two-Person Games , 1996 .

[5]  Ruta Mehta Nash Equilibrium Computation in Various Games , 2013 .

[6]  J. Mertens,et al.  ON THE STRATEGIC STABILITY OF EQUILIBRIA , 1986 .

[7]  M Gilli,et al.  Further Results on Verification Problems in Extensive-Form Games , 2016 .

[8]  Xiaotie Deng,et al.  Settling the Complexity of Two-Player Nash Equilibrium , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[9]  Troels Bjerre Lund Computing a proper equilibrium of a bimatrix game , 2012, EC.

[10]  Nicola Gatti,et al.  Extensive-Form Perfect Equilibrium Computation in Two-Player Games , 2017, AAAI.

[11]  Christos H. Papadimitriou,et al.  On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence , 1994, J. Comput. Syst. Sci..

[12]  Kousha Etessami,et al.  On the Complexity of Nash Equilibria and Other Fixed Points , 2010, SIAM J. Comput..

[13]  Ruta Mehta,et al.  Bilinear Games: Polynomial Time Algorithms for Rank Based Subclasses , 2011, WINE.

[14]  Peter Bro Miltersen,et al.  Computing a quasi-perfect equilibrium of a two-player game , 2010 .

[15]  Vincent Conitzer,et al.  New complexity results about Nash equilibria , 2008, Games Econ. Behav..

[16]  Michael J. Todd,et al.  Orientation in Complementary Pivot Algorithms , 1976, Math. Oper. Res..

[17]  Roger B. Myerson,et al.  Acceptable and predominant correlated equilibria , 1986 .

[18]  J. Howson Equilibria of Polymatrix Games , 1972 .

[19]  R. Anderson “Almost” implies “near” , 1986 .

[20]  E. Damme Refinements of the Nash Equilibrium Concept , 1983 .

[21]  Paul W. Goldberg,et al.  The Complexity of Computing a Nash Equilibrium , 2009, SIAM J. Comput..

[22]  Kristoffer Arnsfelt Hansen,et al.  The Computational Complexity of Trembling Hand Perfection and Other Equilibrium Refinements , 2010, SAGT.

[23]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[24]  E. Vandamme Stability and perfection of nash equilibria , 1987 .

[25]  Nicola Gatti,et al.  New results on the verification of Nash refinements for extensive-form games , 2012, AAMAS.

[26]  Kousha Etessami,et al.  The complexity of computing a (perfect) equilibrium for an n-player extensive form game of perfect recall , 2014, ArXiv.

[27]  C. E. Lemke,et al.  Bimatrix Equilibrium Points and Mathematical Programming , 1965 .

[28]  Vincent Conitzer,et al.  Complexity Results about Nash Equilibria , 2002, IJCAI.

[29]  lexander,et al.  THE GENERALIZED SIMPLEX METHOD FOR MINIMIZING A LINEAR FORM UNDER LINEAR INEQUALITY RESTRAINTS , 2012 .