The Normalization Model of Attention

[1]  Denis Schluppeck,et al.  The role of early visual cortex in visual short-term memory and visual attention , 2009, Vision Research.

[2]  Eric I. Knudsen,et al.  Distinct Mechanisms for Top-Down Control of Neural Gain and Sensitivity in the Owl Optic Tectum , 2008, Neuron.

[3]  Louise S. Delicato,et al.  Acetylcholine contributes through muscarinic receptors to attentional modulation in V1 , 2008, Nature.

[4]  Harvey A Swadlow,et al.  Task difficulty modulates the activity of specific neuronal populations in primary visual cortex , 2008, Nature Neuroscience.

[5]  P. Roelfsema,et al.  Bottom-Up Dependent Gating of Frontal Signals in Early Visual Cortex , 2008, Science.

[6]  Tomaso A. Poggio,et al.  A Canonical Neural Circuit for Cortical Nonlinear Operations , 2008, Neural Computation.

[7]  J. Maunsell,et al.  Spatial Summation Can Explain the Attentional Modulation of Neuronal Responses to Multiple Stimuli in Area V4 , 2008, The Journal of Neuroscience.

[8]  Michele A Basso,et al.  Preparing to Move Increases the Sensitivity of Superior Colliculus Neurons , 2008, The Journal of Neuroscience.

[9]  Nicholas J. Priebe,et al.  Inhibition, Spike Threshold, and Stimulus Selectivity in Primary Visual Cortex , 2008, Neuron.

[10]  B. Dosher,et al.  Characterizing observers using external noise and observer models: assessing internal representations with external noise. , 2008, Psychological review.

[11]  M. Hawken,et al.  Gain Modulation by Nicotine in Macaque V1 , 2007, Neuron.

[12]  F. Qiu,et al.  Figure-ground mechanisms provide structure for selective attention , 2007, Nature Neuroscience.

[13]  R. Douglas,et al.  Mapping the Matrix: The Ways of Neocortex , 2007, Neuron.

[14]  Edward M. Callaway,et al.  Specialized Circuits from Primary Visual Cortex to V2 and Area MT , 2007, Neuron.

[15]  Andrea Hasenstaub,et al.  State Changes Rapidly Modulate Cortical Neuronal Responsiveness , 2007, The Journal of Neuroscience.

[16]  Joonyeol Lee,et al.  Spatial Attention and the Latency of Neuronal Responses in Macaque Area V4 , 2007, The Journal of Neuroscience.

[17]  Xiao-Jing Wang,et al.  An Integrated Microcircuit Model of Attentional Processing in the Neocortex , 2007, The Journal of Neuroscience.

[18]  Jude F. Mitchell,et al.  Differential Attention-Dependent Response Modulation across Cell Classes in Macaque Visual Area V4 , 2007, Neuron.

[19]  C. Gilbert,et al.  Brain States: Top-Down Influences in Sensory Processing , 2007, Neuron.

[20]  Nicholas J. Priebe,et al.  The Emergence of Contrast-Invariant Orientation Tuning in Simple Cells of Cat Visual Cortex , 2007, Neuron.

[21]  David J Heeger,et al.  Neural correlates of sustained spatial attention in human early visual cortex. , 2007, Journal of neurophysiology.

[22]  Fred Henrik Hamker,et al.  V4 receptive field dynamics as predicted by a systems-level model of visual attention using feedback from the frontal eye field , 2006, Neural Networks.

[23]  Terrence J. Sejnowski,et al.  Selective attention through phase relationship of excitatory and inhibitory input synchrony in a model cortical neuron , 2006, Neural Networks.

[24]  M. Hawken,et al.  Loose-patch–juxtacellular recording in vivo—A method for functional characterization and labeling of neurons in macaque V1 , 2006, Journal of Neuroscience Methods.

[25]  J. Maunsell,et al.  Effects of spatial attention on contrast response functions in macaque area V4. , 2006, Journal of neurophysiology.

[26]  L. Martinez,et al.  Circuits that build visual cortical receptive fields , 2006, Trends in Neurosciences.

[27]  M. Carrasco Covert attention increases contrast sensitivity: Psychophysical, neurophysiological and neuroimaging studies. , 2006, Progress in brain research.

[28]  Robert A. Frazor,et al.  Independence of luminance and contrast in natural scenes and in the early visual system , 2005, Nature Neuroscience.

[29]  M. Carandini,et al.  The Suppressive Field of Neurons in Lateral Geniculate Nucleus , 2005, The Journal of Neuroscience.

[30]  J. Reynolds,et al.  Exogenous attentional selection of transparent superimposed surfaces modulates early event-related potentials , 2005, Vision Research.

[31]  A. Leggett A Different Universe: Reinventing Physics from the Bottom Down , 2005 .

[32]  James J DiCarlo,et al.  Multiple Object Response Normalization in Monkey Inferotemporal Cortex , 2005, The Journal of Neuroscience.

[33]  D. McCormick,et al.  Inhibitory Postsynaptic Potentials Carry Synchronized Frequency Information in Active Cortical Networks , 2005, Neuron.

[34]  G. Boynton Attention and visual perception , 2005, Current Opinion in Neurobiology.

[35]  P. Cavanagh,et al.  Tracking multiple targets with multifocal attention , 2005, Trends in Cognitive Sciences.

[36]  Robert Desimone,et al.  Parallel and Serial Neural Mechanisms for Visual Search in Macaque Area V4 , 2005, Science.

[37]  Robert B. Laughlin A Different Universe: Reinventing Physics from the Bottom Down , 2005 .

[38]  E. Rolls,et al.  Neurodynamics of biased competition and cooperation for attention: a model with spiking neurons. , 2005, Journal of neurophysiology.

[39]  James R Müller,et al.  Microstimulation of the superior colliculus focuses attention without moving the eyes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Frances S. Chance,et al.  Drivers and modulators from push-pull and balanced synaptic input. , 2005, Progress in brain research.

[41]  Robert H. Wurtz,et al.  Subcortical Modulation of Attention Counters Change Blindness , 2004, The Journal of Neuroscience.

[42]  M. Carandini Amplification of Trial-to-Trial Response Variability by Neurons in Visual Cortex , 2004, PLoS biology.

[43]  Jorge V. José,et al.  Inhibitory synchrony as a mechanism for attentional gain modulation , 2004, Journal of Physiology-Paris.

[44]  J. Reynolds,et al.  Attentional modulation of visual processing. , 2004, Annual review of neuroscience.

[45]  Jude F. Mitchell,et al.  Object-based attention determines dominance in binocular rivalry , 2004, Nature.

[46]  D. Somers,et al.  Multiple Spotlights of Attentional Selection in Human Visual Cortex , 2004, Neuron.

[47]  S. Treue,et al.  Feature-Based Attention Increases the Selectivity of Population Responses in Primate Visual Cortex , 2004, Current Biology.

[48]  Michael W. Spratling,et al.  A Feedback Model of Visual Attention , 2004, Journal of Cognitive Neuroscience.

[49]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[50]  T. Sato,et al.  Interactions of visual stimuli in the receptive fields of inferior temporal neurons in awake macaques , 2004, Experimental Brain Research.

[51]  P. H. Schiller,et al.  State dependent activity in monkey visual cortex , 2004, Experimental Brain Research.

[52]  J. Nelson,et al.  Intracortical facilitation among co-oriented, co-axially aligned simple cells in cat striate cortex , 2004, Experimental Brain Research.

[53]  C. Blakemore,et al.  Lateral inhibition between orientation detectors in the cat's visual cortex , 2004, Experimental Brain Research.

[54]  M. Tovée,et al.  The responses of single neurons in the temporal visual cortical areas of the macaque when more than one stimulus is present in the receptive field , 2004, Experimental Brain Research.

[55]  M. Carandini Receptive fields and suppressive fields in the early visual system , 2004 .

[56]  Andrea Hasenstaub,et al.  Barrages of Synaptic Activity Control the Gain and Sensitivity of Cortical Neurons , 2003, The Journal of Neuroscience.

[57]  Kenneth D Miller,et al.  Multiplicative Gain Changes Are Induced by Excitation or Inhibition Alone , 2003, The Journal of Neuroscience.

[58]  J-M Hopf,et al.  Dynamics of feature binding during object-selective attention , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[59]  J. Movshon,et al.  Time Course and Time-Distance Relationships for Surround Suppression in Macaque V1 Neurons , 2003, The Journal of Neuroscience.

[60]  R. Silver,et al.  Shunting Inhibition Modulates Neuronal Gain during Synaptic Excitation , 2003, Neuron.

[61]  S. Yantis,et al.  Cortical mechanisms of space-based and object-based attentional control , 2003, Current Opinion in Neurobiology.

[62]  R. Desimone,et al.  Interacting Roles of Attention and Visual Salience in V4 , 2003, Neuron.

[63]  S. Prescott,et al.  Gain control of firing rate by shunting inhibition: Roles of synaptic noise and dendritic saturation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Katherine M. Armstrong,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2003, Nature.

[65]  H. Swadlow Fast-spike interneurons and feedforward inhibition in awake sensory neocortex. , 2003, Cerebral cortex.

[66]  Eero P. Simoncelli Local analysis of visual motion , 2003 .

[67]  M. Meister,et al.  Fast and Slow Contrast Adaptation in Retinal Circuitry , 2002, Neuron.

[68]  K. H. Britten,et al.  Contrast dependence of response normalization in area MT of the rhesus macaque. , 2002, Journal of neurophysiology.

[69]  P. Goldman-Rakic,et al.  Correlated discharges among putative pyramidal neurons and interneurons in the primate prefrontal cortex. , 2002, Journal of neurophysiology.

[70]  M. Carandini,et al.  A Synaptic Explanation of Suppression in Visual Cortex , 2002, The Journal of Neuroscience.

[71]  J. Movshon,et al.  Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[72]  J. Movshon,et al.  Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[73]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[74]  S. Treue,et al.  Attentional Modulation Strength in Cortical Area MT Depends on Stimulus Contrast , 2002, Neuron.

[75]  T. Poggio,et al.  Neural mechanisms of object recognition , 2002, Current Opinion in Neurobiology.

[76]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[77]  Rajesh P. N. Rao,et al.  Probabilistic Models of the Brain: Perception and Neural Function , 2002 .

[78]  Eero P. Simoncelli,et al.  Natural image statistics and divisive normalization: Modeling nonlinearity and adaptation in cortical neurons , 2002 .

[79]  P. Verghese Visual Search and Attention A Signal Detection Theory Approach , 2001, Neuron.

[80]  Eero P. Simoncelli,et al.  Natural signal statistics and sensory gain control , 2001, Nature Neuroscience.

[81]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.

[82]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[83]  T Moore,et al.  Control of eye movements and spatial attention. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[85]  Brent Doiron,et al.  Subtractive and Divisive Inhibition: Effect of Voltage-Dependent Inhibitory Conductances and Noise , 2001, Neural Computation.

[86]  D. Ferster,et al.  The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. , 2000, Science.

[87]  D. Heeger,et al.  Activity in primary visual cortex predicts performance in a visual detection task , 2000, Nature Neuroscience.

[88]  Leslie G. Ungerleider,et al.  Mechanisms of visual attention in the human cortex. , 2000, Annual review of neuroscience.

[89]  Richard Hans Robert Hahnloser,et al.  Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit , 2000, Nature.

[90]  R. Desimone,et al.  Attention Increases Sensitivity of V4 Neurons , 2000, Neuron.

[91]  M. Valdés-Sosa,et al.  Attention to object files defined by transparent motion. , 2000, Journal of experimental psychology. Human perception and performance.

[92]  C. Schroeder,et al.  Intermodal selective attention in monkeys. II: physiological mechanisms of modulation. , 2000, Cerebral cortex.

[93]  E. Niebur,et al.  Growth patterns in the developing brain detected by using continuum mechanical tensor maps , 2022 .

[94]  Stefan Treue,et al.  Seeing multiple directions of motion—physiology and psychophysics , 2000, Nature Neuroscience.

[95]  G H Recanzone,et al.  Effects of attention on MT and MST neuronal activity during pursuit initiation. , 2000, Journal of neurophysiology.

[96]  M. Carandini,et al.  Membrane Potential and Firing Rate in Cat Primary Visual Cortex , 2000, The Journal of Neuroscience.

[97]  R. Desimone,et al.  Attention Increases Sensitivity of V4 Neurons , 2000, Neuron.

[98]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[99]  Martin J. Wainwright,et al.  Scale Mixtures of Gaussians and the Statistics of Natural Images , 1999, NIPS.

[100]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[101]  G Westheimer,et al.  Dynamics of spatial summation in primary visual cortex of alert monkeys. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[102]  R. Shapley,et al.  Contrast's effect on spatial summation by macaque V1 neurons , 1999, Nature Neuroscience.

[103]  Karl J. Friston,et al.  The physiological basis of attentional modulation in extrastriate visual areas , 1999, Nature Neuroscience.

[104]  K. H. Britten,et al.  Spatial Summation in the Receptive Fields of MT Neurons , 1999, The Journal of Neuroscience.

[105]  Stefan Treue,et al.  Feature-based attention influences motion processing gain in macaque visual cortex , 1999, Nature.

[106]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[107]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[108]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[109]  R. Desimone,et al.  Responses of Neurons in Inferior Temporal Cortex during Memory- Guided Visual Search , 1998 .

[110]  R. Guillery,et al.  On the actions that one nerve cell can have on another: distinguishing "drivers" from "modulators". , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[111]  J. Braun Vision and attention: the role of training , 1998, Nature.

[112]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[113]  E. Callaway Local circuits in primary visual cortex of the macaque monkey. , 1998, Annual review of neuroscience.

[114]  R. Wurtz,et al.  Responses of MT and MST neurons to one and two moving objects in the receptive field. , 1997, Journal of neurophysiology.

[115]  G. Orban,et al.  Responses of macaque inferior temporal neurons to overlapping shapes. , 1997, Cerebral cortex.

[116]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[117]  D. Heeger,et al.  Modeling the Apparent Frequency-specific Suppression in Simple Cell Responses , 1997, Vision Research.

[118]  J. B. Levitt,et al.  Contrast dependence of contextual effects in primate visual cortex , 1997, nature.

[119]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[120]  D. Heeger,et al.  Comparison of contrast-normalization and threshold models of the responses of simple cells in cat striate cortex , 1997, Visual Neuroscience.

[121]  D. Heeger,et al.  Contrast normalization and a linear model for the directional selectivity of simple cells in cat striate cortex , 1997, Visual Neuroscience.

[122]  R. Desimone,et al.  Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. , 1997, Journal of neurophysiology.

[123]  L. Abbott,et al.  A model of multiplicative neural responses in parietal cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[124]  John H. R. Maunsell,et al.  Attentional modulation of visual motion processing in cortical areas MT and MST , 1996, Nature.

[125]  E. Marder,et al.  Principles of rhythmic motor pattern generation. , 1996, Physiological reviews.

[126]  Eero P. Simoncelli,et al.  Computational models of cortical visual processing. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[127]  E. Bizzi,et al.  The Cognitive Neurosciences , 1996 .

[128]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[129]  M. Carandini,et al.  Summation and division by neurons in primate visual cortex. , 1994, Science.

[130]  B. C. Motter,et al.  Neural correlates of feature selective memory and pop-out in extrastriate area V4 , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[131]  B. Motter Neural correlates of attentive selection for color or luminance in extrastriate area V4 , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[132]  Michael Jenkin,et al.  Spatial vision in humans and robots , 1994 .

[133]  I. Ohzawa,et al.  Length and width tuning of neurons in the cat's primary visual cortex. , 1994, Journal of neurophysiology.

[134]  David J. Heeger,et al.  Model of visual motion sensing , 1994 .

[135]  D. Heeger Modeling simple-cell direction selectivity with normalized, half-squared, linear operators. , 1993, Journal of neurophysiology.

[136]  B. C. Motter Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. , 1993, Journal of neurophysiology.

[137]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[138]  E. Miller,et al.  Suppression of visual responses of neurons in inferior temporal cortex of the awake macaque by addition of a second stimulus , 1993, Brain Research.

[139]  John Duncan,et al.  A neural basis for visual search in inferior temporal cortex , 1993, Nature.

[140]  D. Heeger Half-squaring in responses of cat striate cells , 1992, Visual Neuroscience.

[141]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[142]  A. B. Bonds,et al.  Inhibitory refinement of spatial frequency selectivity in single cells of the cat striate cortex , 1991, Vision Research.

[143]  J. Maunsell,et al.  Extraretinal representations in area V4 in the macaque monkey , 1991, Visual Neuroscience.

[144]  D. G. Albrecht,et al.  Motion selectivity and the contrast-response function of simple cells in the visual cortex , 1991, Visual Neuroscience.

[145]  Michael S. Landy,et al.  Computational models of visual processing , 1991 .

[146]  R A Andersen,et al.  The response of area MT and V1 neurons to transparent motion , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[147]  Michael S. Landy,et al.  Nonlinear Model of Neural Responses in Cat Visual Cortex , 1991 .

[148]  A. B. Bonds Role of Inhibition in the Specification of Orientation Selectivity of Cells in the Cat Striate Cortex , 1989, Visual Neuroscience.

[149]  H. Spitzer,et al.  Increased attention enhances both behavioral and neuronal performance. , 1988, Science.

[150]  E Kaplan,et al.  Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. , 1987, The Journal of physiology.

[151]  J. Victor The dynamics of the cat retinal X cell centre. , 1987, The Journal of physiology.

[152]  C. Eriksen,et al.  Visual attention within and around the field of focal attention: A zoom lens model , 1986, Perception & psychophysics.

[153]  C. Eriksen,et al.  Allocation of attention in the visual field. , 1985, Journal of experimental psychology. Human perception and performance.

[154]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[155]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[156]  J Allman,et al.  Direction- and Velocity-Specific Responses from beyond the Classical Receptive Field in the Middle Temporal Visual Area (MT) , 1985, Perception.

[157]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[158]  R. Wurtz,et al.  Visual responses of inferior temporal neurons in awake rhesus monkey. , 1983, Journal of neurophysiology.

[159]  D. Burr,et al.  Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[160]  G. Buzsáki,et al.  Direct afferent excitation and long-term potentiation of hippocampal interneurons. , 1982, Journal of neurophysiology.

[161]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[162]  J D Victor,et al.  How the contrast gain control modifies the frequency responses of cat retinal ganglion cells. , 1981, The Journal of physiology.

[163]  M. Posner,et al.  Attention and the detection of signals. , 1980, Journal of experimental psychology.

[164]  Charles Samuel Harris,et al.  Visual coding and adaptability , 1980 .

[165]  R. Shapley,et al.  The effect of contrast on the transfer properties of cat retinal ganglion cells. , 1978, The Journal of physiology.

[166]  G Sperling,et al.  The attention operating characteristic: examples from visual search. , 1978, Science.

[167]  J. Movshon,et al.  Receptive field organization of complex cells in the cat's striate cortex. , 1978, The Journal of physiology.

[168]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[169]  D. Simons Response properties of vibrissa units in rat SI somatosensory neocortex. , 1978, Journal of neurophysiology.

[170]  S. Grossberg Contour Enhancement , Short Term Memory , and Constancies in Reverberating Neural Networks , 1973 .

[171]  M M Sondhi,et al.  Model for visual luminance discrimination and flicker detection. , 1968, Journal of the Optical Society of America.

[172]  D. Kernell,et al.  Quantitative aspects of repetitive firing of mammalian motoneurones, caused by injected currents , 1963, The Journal of physiology.

[173]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[174]  D. Spalding The Principles of Psychology , 1873, Nature.