Motion planning and reactive control on learnt skill manifolds †

We address the problem of encoding and executing skills, i.e. motion tasks involving a combination of specifications regarding constraints and variability. We take an approach that is model-free in the sense that we do not assume an explicit and complete analytical specification of the task – which can be hard to obtain for many realistic robot systems. Instead, we learn an encoding of the skill from observations of an initial set of sample trajectories. This is achieved by encoding trajectories in a skill manifold which is learnt from data and generalizes in the sense that all trajectories on the manifold satisfy the constraints and allowable variability in the demonstrated samples. In new instances of the trajectory-generation problem, we restrict attention to geodesic trajectories on the learnt skill manifold, making computation more tractable. This procedure is also extended to accommodate dynamic obstacles and constraints, and to dynamically react against unexpected perturbations, enabling a form of model-free feedback control with respect to an incompletely modelled skill. We present experiments to validate this framework using various robotic systems – ranging from a three-link arm to a small humanoid robot – demonstrating significant computational improvements without loss of accuracy. Finally, we present a comparative evaluation of our framework against a state-of-the-art imitation-learning method.

[1]  Subramanian Ramamoorthy,et al.  Motion Synthesis through Randomized Exploration on Submanifolds of Configuration Space , 2009, RoboCup.

[2]  Mark Crovella,et al.  Estimating intrinsic dimension via clustering , 2012, 2012 IEEE Statistical Signal Processing Workshop (SSP).

[3]  Stefan Schaal,et al.  Incremental Online Learning in High Dimensions , 2005, Neural Computation.

[4]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[5]  Takeo Kanade,et al.  Footstep Planning for the Honda ASIMO Humanoid , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[6]  Jun Nakanishi,et al.  Trajectory formation for imitation with nonlinear dynamical systems , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[7]  T. Flash,et al.  The coordination of arm movements: an experimentally confirmed mathematical model , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  Howie Choset,et al.  Composition of local potential functions for global robot control and navigation , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[9]  Katsu Yamane,et al.  Dynamics Filter - concept and implementation of online motion Generator for human figures , 2000, IEEE Trans. Robotics Autom..

[10]  Pieter Abbeel,et al.  Apprenticeship learning via inverse reinforcement learning , 2004, ICML.

[11]  Ludovic Righetti,et al.  Movement generation using dynamical systems : a humanoid robot performing a drumming task , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[12]  Peter J. Bickel,et al.  Maximum Likelihood Estimation of Intrinsic Dimension , 2004, NIPS.

[13]  S. Schaal Dynamic Movement Primitives -A Framework for Motor Control in Humans and Humanoid Robotics , 2006 .

[14]  Benjamin Kuipers,et al.  Qualitative Hybrid Control of Dynamic Bipedal Walking , 2006, Robotics: Science and Systems.

[15]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[16]  F. Pirani MATHEMATICAL METHODS OF CLASSICAL MECHANICS (Graduate Texts in Mathematics, 60) , 1982 .

[17]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[18]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[19]  Rüdiger Dillmann,et al.  Incremental Learning of Tasks From User Demonstrations, Past Experiences, and Vocal Comments , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[20]  Aude Billard,et al.  Dynamical System Modulation for Robot Learning via Kinesthetic Demonstrations , 2008, IEEE Transactions on Robotics.

[21]  Siddhartha S. Srinivasa,et al.  Probabilistically complete planning with end-effector pose constraints , 2010, 2010 IEEE International Conference on Robotics and Automation.

[22]  Daniel M. Wolpert,et al.  Making smooth moves , 2022 .

[23]  Siddhartha S. Srinivasa,et al.  Pose-constrained whole-body planning using Task Space Region Chains , 2009, 2009 9th IEEE-RAS International Conference on Humanoid Robots.

[24]  Stefan Schaal,et al.  STOMP: Stochastic trajectory optimization for motion planning , 2011, 2011 IEEE International Conference on Robotics and Automation.

[25]  Nancy M. Amato,et al.  Biasing Samplers to Improve Motion Planning Performance , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[26]  Gary J. Balas,et al.  Software-enabled control : information technology for dynamical systems , 2005 .

[27]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[28]  Benjamin Kuipers,et al.  Trajectory generation for dynamic bipedal walking through qualitative model based manifold learning , 2008, 2008 IEEE International Conference on Robotics and Automation.

[29]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[30]  Howie Choset,et al.  Flow-Through Policies for Hybrid Controller Synthesis Applied to Fully Actuated Systems , 2009, IEEE Transactions on Robotics.

[31]  Subramanian Ramamoorthy,et al.  Geodesic trajectory generation on learnt skill manifolds , 2010, 2010 IEEE International Conference on Robotics and Automation.

[32]  Matthew Brand,et al.  Charting a Manifold , 2002, NIPS.

[33]  Helge J. Ritter Self-Organizing Maps for Robot Control , 1997, ICANN.

[34]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[35]  Ian R. Manchester,et al.  LQR-trees: Feedback Motion Planning via Sums-of-Squares Verification , 2010, Int. J. Robotics Res..

[36]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[37]  E. Todorov,et al.  A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic systems , 2005, Proceedings of the 2005, American Control Conference, 2005..

[38]  R J Full,et al.  Templates and anchors: neuromechanical hypotheses of legged locomotion on land. , 1999, The Journal of experimental biology.

[39]  Nancy M. Amato,et al.  An obstacle-based rapidly-exploring random tree , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[40]  Mike Stilman,et al.  Task constrained motion planning in robot joint space , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[41]  Jun Morimoto,et al.  Learning from demonstration and adaptation of biped locomotion , 2004, Robotics Auton. Syst..

[42]  Henk Nijmeijer,et al.  Robot Programming by Demonstration , 2010, SIMPAR.

[43]  Oliver Brock,et al.  BiSpace Planning: Concurrent Multi-Space Exploration , 2009 .

[44]  William S. Levine,et al.  The Control Handbook , 2005 .

[45]  S. LaValle,et al.  Randomized Kinodynamic Planning , 2001 .

[46]  Maja J. Mataric,et al.  A spatio-temporal extension to Isomap nonlinear dimension reduction , 2004, ICML.

[47]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[48]  B. Mettler,et al.  Trajectory Interpolation for Parametrized Maneuvering and Flexible Motion Planning of Autonomous Vehicles , 2004 .

[49]  Weiwei Li,et al.  An Iterative Optimal Control and Estimation Design for Nonlinear Stochastic System , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[50]  David C. Conner Integrating planning and control for constrained dynamical systems , 2007 .

[51]  Victor M. Becerra,et al.  Optimal control , 2008, Scholarpedia.

[52]  Mark H. Overmars,et al.  The Gaussian sampling strategy for probabilistic roadmap planners , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[53]  B. Mettler,et al.  Nonlinear trajectory generation for autonomous vehicles via parameterized maneuver classes , 2006 .

[54]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, SIGGRAPH 2004.

[55]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[56]  A. Billard,et al.  Learning the Nonlinear Multivariate Dynamics of Motion of Robotic Manipulators , 2009 .

[57]  Munther A. Dahleh,et al.  Maneuver-based motion planning for nonlinear systems with symmetries , 2005, IEEE Transactions on Robotics.

[58]  Aude Billard,et al.  Statistical Learning by Imitation of Competing Constraints in Joint Space and Task Space , 2009, Adv. Robotics.

[59]  Alfred O. Hero,et al.  Manifold Learning with Geodesic Minimal Spanning Trees , 2003, ArXiv.

[60]  Jakob J. Verbeek,et al.  Learning nonlinear image manifolds by global alignment of local linear models , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[61]  John J. Craig,et al.  Introduction to Robotics Mechanics and Control , 1986 .

[62]  Aude Billard,et al.  A probabilistic Programming by Demonstration framework handling constraints in joint space and task space , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[63]  Siddhartha S. Srinivasa,et al.  Manipulation planning on constraint manifolds , 2009, 2009 IEEE International Conference on Robotics and Automation.

[64]  Evangelos A. Theodorou,et al.  An iterative path integral stochastic optimal control approach for learning robotic tasks , 2011 .

[65]  Stefan Schaal,et al.  Learning and generalization of motor skills by learning from demonstration , 2009, 2009 IEEE International Conference on Robotics and Automation.

[66]  Timothy Bretl,et al.  Multi-Step Motion Planning for Free-Climbing Robots , 2004, WAFR.

[67]  Ron Alterovitz,et al.  Demonstration-Guided Motion Planning , 2011, ISRR.

[68]  Michael I. Jordan,et al.  A Minimal Intervention Principle for Coordinated Movement , 2002, NIPS.

[69]  M. Kawato,et al.  Formation and control of optimal trajectory in human multijoint arm movement , 1989, Biological Cybernetics.

[70]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[71]  Serge J. Belongie,et al.  Non-isometric manifold learning: analysis and an algorithm , 2007, ICML '07.

[72]  Jun Nakanishi,et al.  Movement imitation with nonlinear dynamical systems in humanoid robots , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[73]  Masayuki Inaba,et al.  Dynamically-Stable Motion Planning for Humanoid Robots , 2002, Auton. Robots.

[74]  Andrew D. Lewis Is it worth learning differential geometric methods for modeling and control of mechanical systems? , 2007, Robotica.

[75]  Stefan Schaal,et al.  http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained , 2007 .

[76]  Jun Nakanishi,et al.  Learning Attractor Landscapes for Learning Motor Primitives , 2002, NIPS.

[77]  Helge Ritter,et al.  Local PSOMs and Chebyshev PSOMs -Improving the Parametrised Self-Organizing Maps , 1995 .

[78]  Dinesh Manocha,et al.  Global vector field computation for feedback motion planning , 2009, 2009 IEEE International Conference on Robotics and Automation.

[79]  Yee Whye Teh,et al.  Automatic Alignment of Local Representations , 2002, NIPS.

[80]  Tariq Samad,et al.  A ManeuverBased Hybrid Control Architecture for Autonomous Vehicle Motion Planning , 2003 .

[81]  Jerrold E. Marsden,et al.  Discrete Geometric Optimal Control on Lie Groups , 2011, IEEE Transactions on Robotics.

[82]  Balázs Kégl,et al.  Intrinsic Dimension Estimation Using Packing Numbers , 2002, NIPS.

[83]  Mitul Saha,et al.  A slicing connection strategy for constructing PRMs in high-dimensional cspaces , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[84]  Pieter Abbeel,et al.  Learning for control from multiple demonstrations , 2008, ICML '08.

[85]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[86]  Daniel E. Koditschek,et al.  Sequential Composition of Dynamically Dexterous Robot Behaviors , 1999, Int. J. Robotics Res..

[87]  Phillip J. McKerrow,et al.  Introduction to robotics , 1991 .

[88]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[89]  Sethu Vijayakumar,et al.  Synthesising Novel Movements through Latent Space Modulation of Scalable Control Policies , 2008, SAB.

[90]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[91]  Aude Billard,et al.  Learning Non-linear Multivariate Dynamics of Motion in Robotic Manipulators , 2011, Int. J. Robotics Res..

[92]  Matthias Hein,et al.  Intrinsic dimensionality estimation of submanifolds in Rd , 2005, ICML.

[93]  Serge J. Belongie,et al.  Learning to Traverse Image Manifolds , 2006, NIPS.

[94]  Minoru Asada,et al.  Learning humanoid motion dynamics through sensory-motor mapping in reduced dimensional spaces , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[95]  David J. Fleet,et al.  This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE Gaussian Process Dynamical Model , 2007 .

[96]  Subramanian Ramamoorthy,et al.  Constrained geodesic trajectory generation on learnt skill manifolds , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[97]  Brett Browning,et al.  A survey of robot learning from demonstration , 2009, Robotics Auton. Syst..

[98]  Aude Billard,et al.  Handbook of Robotics Chapter 59 : Robot Programming by Demonstration , 2007 .

[99]  Howie Choset,et al.  Integrated Planning and Control for Convex-bodied Nonholonomic Systems using Local Feedback Control Policies , 2006, Robotics: Science and Systems.

[100]  M WangJack,et al.  Gaussian Process Dynamical Models for Human Motion , 2008 .