Control and Design of Snake Robots

Snake robots are ideally suited to highly confined environments because their small cross-sections and highly redundant kinematics allow them to enter and move through tight spaces with a high degree of dexterity. Despite these theoretical advantages, snake robots also pose a number of practical challenges that have limited their usefulness in the field. These challenges include the need to coordinate a large number of degrees of freedom, decreased system reliability due to the serially chained nature of the robot’s design, and the complex interaction of the robot’s shape with the world. This thesis makes progress towards addressing these issues with two main areas of contribution. In the first part, we provide tools for supportive autonomy in snake robots. To provide intuitive high-level autonomous behaviors, we extend our lab’s existing gait-based control framework to develop gait-based compliant control. To reliably and accurately sense the robot’s pose and shape we present new techniques for robust state estimation that leverage the redundancies in the distributed sensing capabilities of our group’s articulated snake robots. To demonstrate these contributions in a practical application, we use them to enable a snake robot to navigate a real-world underground pipe network. One of the most limiting characteristics of our snake robots (and robots in general) is the inability to precisely sense and control the torques and forces of their actuators. As such, the second part of this thesis focuses on the design and control of a new series-elastic actuated snake robot that incorporates a high performance series-elastic actuator (SEA) and torque control. After describing the novel design of the SEA, we discuss our perspective on how to incorporate torque control and series elasticity into snake robots. Finally, we demonstrate prototypes of new low impedance motions for snake robots. These motions naturally comply to obstacles and unstructured terrain, and open a new avenue of research for snake robot locomotion.

[1]  Howie Choset,et al.  Geometric motion planning: The local connection, Stokes’ theorem, and the importance of coordinate choice , 2011, Int. J. Robotics Res..

[2]  Woojin Lee Designing articulated legs for running machines , 1990 .

[3]  Shigeo Hirose,et al.  Study on the 3D shape of active cord mechanism , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[4]  W. Mosauer A Note on the Sidewinding Locomotion of Snakes , 1930, The American Naturalist.

[5]  Houxiang Zhang,et al.  Locomotion capabilities of a modular robot with eight pitch-yaw-connecting modules , 2006 .

[6]  Mattias Nordin,et al.  Controlling mechanical systems with backlash - a survey , 2002, Autom..

[7]  Johann Borenstein,et al.  The OmniTread OT-4 serpentine robot , 2008, 2008 IEEE International Conference on Robotics and Automation.

[8]  Howie Choset,et al.  Generating gaits for snake robots: annealed chain fitting and keyframe wave extraction , 2010, Auton. Robots.

[9]  Simon J. Julier,et al.  The spherical simplex unscented transformation , 2003, Proceedings of the 2003 American Control Conference, 2003..

[10]  G.A. Pratt,et al.  Series elastic actuator development for a biomimetic walking robot , 1999, 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No.99TH8399).

[11]  Masayoshi Tomizuka,et al.  A compact rotary series elastic actuator for knee joint assistive system , 2010, 2010 IEEE International Conference on Robotics and Automation.

[12]  Howie Choset,et al.  Virtual Chassis for Snake Robots: Definition and Applications , 2012, Adv. Robotics.

[13]  W Mosauer,et al.  ON THE LOCOMOTION OF SNAKES. , 1932, Science.

[14]  Shigeo Hirose,et al.  Biologically Inspired Robots , 1993 .

[15]  Fumitoshi Matsuno,et al.  Control of a Snake-like Robot Using the Screw Drive Mechanism , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[16]  Ian D. Walker,et al.  Kinematics for multisection continuum robots , 2006, IEEE Transactions on Robotics.

[17]  A. Dzul,et al.  Spherical simplex sigma-point Kalman filters: A comparison in the inertial navigation of a terrestrial vehicle , 2008, 2008 American Control Conference.

[18]  Jun Nakanishi,et al.  Learning Attractor Landscapes for Learning Motor Primitives , 2002, NIPS.

[19]  Shuichi Wakimoto,et al.  A micro snake-like robot for small pipe inspection , 2003, MHS2003. Proceedings of 2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No.03TH8717).

[20]  Shigeo Hirose,et al.  Steering of pedal wave of a snake-like robot by superposition of curvatures , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  G. Wahba A Least Squares Estimate of Satellite Attitude , 1965 .

[22]  Howie Choset,et al.  Virtual chassis for snake robots , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  Shuuji Kajita,et al.  Study of dynamic biped locomotion on rugged terrain-derivation and application of the linear inverted pendulum mode , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[24]  K.S. Peterson,et al.  Control of a Snake-Like Robot in an Elastically Deformable Channel , 2008, IEEE/ASME Transactions on Mechatronics.

[25]  E. Kraft,et al.  A quaternion-based unscented Kalman filter for orientation tracking , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[26]  Shigeo Hirose,et al.  Snake-like active wheel robot ACM-R4.1 with joint torque sensor and limiter , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[27]  Gregory S. Chirikjian,et al.  A 'sidewinding' locomotion gait for hyper-redundant robots , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[28]  Fumiya Iida,et al.  Running and Walking with Compliant Legs , 2006 .

[29]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[30]  Mark Yim,et al.  PolyBot: a modular reconfigurable robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[31]  Shigeo Hirose,et al.  Snake-like robots [Tutorial] , 2009, IEEE Robotics & Automation Magazine.

[32]  R. Bro,et al.  Resolving the sign ambiguity in the singular value decomposition , 2008 .

[33]  Richard Paul,et al.  Manipulator compliance based on joint torque control , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[34]  Akio Gofuku,et al.  Realization of cylinder climbing locomotion with helical form by a snake robot with passive wheels , 2009, 2009 IEEE International Conference on Robotics and Automation.

[35]  Howie Choset,et al.  Design of a modular snake robot , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[36]  E. Guizzo,et al.  The rise of the robot worker , 2012, IEEE Spectrum.

[37]  Akio Ishiguro,et al.  Obstacles are beneficial to me! Scaffold-based locomotion of a snake-like robot using decentralized control , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[38]  Howie Choset,et al.  Design and architecture of the unified modular snake robot , 2012, 2012 IEEE International Conference on Robotics and Automation.

[39]  Gregory S. Chirikjian,et al.  The kinematics of hyper-redundant robot locomotion , 1995, IEEE Trans. Robotics Autom..

[40]  B. Jayne Kinematics of terrestrial snake locomotion , 1986 .

[41]  Matthew T. Mason,et al.  Compliance and Force Control for Computer Controlled Manipulators , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[42]  Robert O. Ambrose,et al.  Robonaut 2 - The first humanoid robot in space , 2011, 2011 IEEE International Conference on Robotics and Automation.

[43]  Zeljko M. Durovic,et al.  Robust estimation with unknown noise statistics , 1999, IEEE Trans. Autom. Control..

[44]  Shigeo Hirose,et al.  Approximations to continuous curves of Active Cord Mechanism made of arc-shaped joints or double joints , 2010, 2010 IEEE International Conference on Robotics and Automation.

[45]  A. Kuwada,et al.  Automatic pipe negotiation control for snake-like robot , 2008, 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[46]  Aksel Andreas Transeth,et al.  Modelling and Control of Snake Robots , 2008 .

[47]  Matthew M. Williamson,et al.  Series elastic actuators , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[48]  Ian D. Aiken,et al.  AN ANALYTICAL HYSTERESIS MODEL FOR ELASTOMERIC SEISMIC ISOLATION BEARINGS , 1997 .

[49]  Maja J. Mataric,et al.  Automated Derivation of Primitives for Movement Classification , 2000, Auton. Robots.

[50]  Yoshihiro Takita,et al.  Adaptive locomotion of a snake like robot based on curvature derivatives , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[51]  Chi Wang,et al.  Engineering with rubber - how to design rubber components - 2nd edition , 1992 .

[52]  Auke Jan Ijspeert,et al.  Online trajectory generation in an amphibious snake robot using a lamprey-like central pattern generator model , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[53]  Steven Dubowsky,et al.  On the dynamics of manipulators in space using the virtual manipulator approach , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[54]  F. Markley Attitude determination using vector observations and the singular value decomposition , 1988 .

[55]  Daniel I. Goldman,et al.  Wiggling Through the World: The mechanics of slithering locomotion depend on the surroundings , 2010 .

[56]  Howie Choset,et al.  Gait-based compliant control for snake robots , 2013, 2013 IEEE International Conference on Robotics and Automation.

[57]  Sebastian Thrun,et al.  Discriminative Training of Kalman Filters , 2005, Robotics: Science and Systems.

[58]  Howie Choset,et al.  Simplified motion modeling for snake robots , 2012, 2012 IEEE International Conference on Robotics and Automation.

[59]  Arthur D Kuo,et al.  The relative roles of feedforward and feedback in the control of rhythmic movements. , 2002, Motor control.

[60]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[61]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[62]  Fredrik Karlsson,et al.  Modelling Non-Linear Dynamics of Rubber Bushings - Parameter Identification and Validation , 2003 .

[63]  Howie Choset,et al.  Parameterized and Scripted Gaits for Modular Snake Robots , 2009, Adv. Robotics.

[64]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[65]  Jonathan W. Hurst,et al.  The role and implementation of compliance in legged locomotion , 2008 .

[66]  Howie Choset,et al.  Proposal of EARLI for the snake robot's obstacle aided locomotion , 2012, 2012 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR).

[67]  Julia Badger,et al.  Model-based robotic dynamic motion control for the Robonaut 2 humanoid robot , 2013, 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids).

[68]  J. Gray The mechanism of locomotion in snakes. , 1946, The Journal of experimental biology.

[69]  Masayuki Inaba,et al.  Design of high torque and high speed leg module for high power humanoid , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[70]  Stefan Schaal,et al.  Learning an Outlier-Robust Kalman Filter , 2007, ECML.

[71]  Howie Choset,et al.  Motion estimation of snake robots in straight pipes , 2013, 2013 IEEE International Conference on Robotics and Automation.

[72]  Maurizio Pilu,et al.  A direct method for stereo correspondence based on singular value decomposition , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[73]  Howie Choset,et al.  Online calibration of a compact series elastic actuator , 2014, 2014 American Control Conference.

[74]  Ren C. Luo,et al.  Multisensor fusion and integration: approaches, applications, and future research directions , 2002 .

[75]  Auke Jan Ijspeert,et al.  Central pattern generators for locomotion control in animals and robots: A review , 2008, Neural Networks.

[76]  Wolfram Burgard,et al.  Probabilistic Robotics (Intelligent Robotics and Autonomous Agents) , 2005 .

[77]  Jasmine A. Nirody,et al.  The mechanics of slithering locomotion , 2009, Proceedings of the National Academy of Sciences.

[78]  S. Hirose,et al.  Design of slim slime robot and its gait of locomotion , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[79]  S. Mitter,et al.  Robust Recursive Estimation in the Presence of Heavy-Tailed Observation Noise , 1994 .

[80]  F. Wilczek,et al.  Geometry of self-propulsion at low Reynolds number , 1989, Journal of Fluid Mechanics.

[81]  Howie Choset,et al.  Robust State Estimation With Redundant Proprioceptive Sensors , 2013 .

[82]  Lei Zhang,et al.  Development of an autonomous in-pipe robot for offshore pipeline maintenance , 2010, Ind. Robot.

[83]  Howie Choset,et al.  State estimation for snake robots , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[84]  Gregory S. Chirikjian,et al.  A modal approach to hyper-redundant manipulator kinematics , 1994, IEEE Trans. Robotics Autom..

[85]  Hyoukryeol Choi,et al.  In-pipe inspection robot system with active steering mechanism , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[86]  Wolfram Burgard,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[87]  Christopher G. Atkeson,et al.  Compliant control of a hydraulic humanoid joint , 2007, 2007 7th IEEE-RAS International Conference on Humanoid Robots.

[88]  Pål Liljebäck,et al.  Experimental Investigation of Obstacle-Aided Locomotion With a Snake Robot , 2011, IEEE Transactions on Robotics.

[89]  G.A. Pratt,et al.  Late motor processing in low-impedance robots: impedance control of series-elastic actuators , 2004, Proceedings of the 2004 American Control Conference.

[90]  Anastasios I. Mourikis,et al.  3-D motion estimation and online temporal calibration for camera-IMU systems , 2013, 2013 IEEE International Conference on Robotics and Automation.

[91]  Oussama Khatib,et al.  Joint Torque Sensory Feedback in the Control of a PUMA Manipulator , 1986 .

[92]  Masayuki Inaba,et al.  Thermal control of electrical motors for high-power humanoid robots , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[93]  David W. Robinson,et al.  Design and analysis of series elasticity in closed-loop actuator force control , 2000 .

[94]  Gregory S. Chirikjian,et al.  Modular Self-Reconfigurable Robot Systems , 2007 .

[95]  H. C. Longuet-Higgins,et al.  An algorithm for associating the features of two images , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[96]  Alonzo Kelly,et al.  Online calibration of vehicle powertrain and pose estimation parameters using integrated dynamics , 2012, 2012 IEEE International Conference on Robotics and Automation.

[97]  Kazuhito Yokoi,et al.  Resolved momentum control: humanoid motion planning based on the linear and angular momentum , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[98]  Howie Choset,et al.  Design and Modeling of a Series Elastic Element for Snake Robots , 2013 .

[99]  Francesca Odone,et al.  SVD-matching using SIFT features , 2006, Graph. Model..

[100]  Paul Zarchan,et al.  Fundamentals of Kalman Filtering: A Practical Approach , 2001 .

[101]  Pål Liljebäck,et al.  A survey on snake robot modeling and locomotion , 2009, Robotica.

[102]  Anastasios I. Mourikis,et al.  Real-time motion tracking on a cellphone using inertial sensing and a rolling-shutter camera , 2013, 2013 IEEE International Conference on Robotics and Automation.

[103]  Zengcai V. Guo,et al.  Limbless undulatory propulsion on land , 2008, Proceedings of the National Academy of Sciences.

[104]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .