Learning Maps for Indoor Mobile Robot Navigation.

Abstract : Autonomous robots must be able to learn and maintain models of their environments. Research on mobile robot navigation has produced two major paradigms for mapping indoor environments: grid-based and topological. While grid-based methods produce accurate metric maps, their complexity often prohibits efficient planning and problem solving in large-scale indoor environments. Topological maps, on the other hand, can be used much more efficiently, yet accurate and consistent topological maps are considerably difficult to learn in large-scale environments. This paper describes an approach that integrates both paradigms: grid-based and topological. Grid-based maps are learned using artificial neural networks and Bayesian integration. Topological maps are generated on top of the grid- based maps, by partitioning the latter into coherent regions. By combining both paradigms-grid-based and topological-, the approach presented here gains the best of both worlds: accuracy/consistency and efficiency. The paper gives results for autonomously operating a mobile robot equipped with sonar sensors in populated multi-room environments.

[1]  Ronald A. Howard,et al.  Dynamic Programming and Markov Processes , 1960 .

[2]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[3]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[4]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[5]  S. M. Udupa,et al.  Collision Detection and Avoidance in Computer Controlled Manipulators , 1977, IJCAI.

[6]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[7]  John H. Reif,et al.  Complexity of the mover's problem and generalizations , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[8]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Jean-Paul Laumond,et al.  Position referencing and consistent world modeling for mobile robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[10]  Chee-Keng Yap,et al.  A "Retraction" Method for Planning the Motion of a Disc , 1985, J. Algorithms.

[11]  Hans P. Moravec,et al.  High resolution maps from wide angle sonar , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[12]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[13]  Micha Sharir,et al.  Planning, geometry, and complexity of robot motion , 1986 .

[14]  Ronald L. Rivest,et al.  Diversity-based inference of finite automata , 1994, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[15]  Robert E. Schapire,et al.  A new approach to unsupervised learning in deterministic environments , 1990 .

[16]  Alberto Elfes,et al.  Sonar-based real-world mapping and navigation , 1987, IEEE J. Robotics Autom..

[17]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[18]  Bruce Randall Donald,et al.  Simplified Voronoi diagrams , 1987, SCG '87.

[19]  Roman Kuc,et al.  Physically Based Simulation Model for Acoustic Sensor Robot Navigation , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Mark S. Boddy,et al.  An Analysis of Time-Dependent Planning , 1988, AAAI.

[21]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[22]  Hans P. Moravec Sensor Fusion in Certainty Grids for Mobile Robots , 1988, AI Mag..

[23]  Benjamin Kuipers,et al.  Navigation and Mapping in Large Scale Space , 1988, AI Mag..

[24]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[25]  James L. Crowley,et al.  World modeling and position estimation for a mobile robot using ultrasonic ranging , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[26]  Alberto Elfes,et al.  Occupancy grids: a probabilistic framework for robot perception and navigation , 1989 .

[27]  R. Hinkel,et al.  ENVIRONMENT PERCEPTION WITH A LASER RADAR IN A FAST MOVING ROBOT , 1989 .

[28]  Michael C. Mozer,et al.  Discovering the Structure of a Reactive Environment by Exploration , 1990, Neural Computation.

[29]  Maja J. Matarić,et al.  A Distributed Model for Mobile Robot Environment-Learning and Navigation , 1990 .

[30]  Ingemar J. Cox,et al.  Dynamic Map Building for an Autonomous Mobile Robot , 1990, EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications.

[31]  Carl F. R. Weiman,et al.  Helpmate autonomous mobile robot nav-igation system , 1991 .

[32]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[33]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[34]  Ingemar J. Cox,et al.  Blanche-an experiment in guidance and navigation of an autonomous robot vehicle , 1991, IEEE Trans. Robotics Autom..

[35]  John Hallam,et al.  Location Recognition in a Mobile Robot Using Self-Organising Feature Maps , 1991 .

[36]  Benjamin Kuipers,et al.  A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations , 1991, Robotics Auton. Syst..

[37]  John J. Leonard,et al.  Directed Sonar Sensing for Mobile Robot Navigation , 1992 .

[38]  Geoffrey E. Hinton,et al.  Feudal Reinforcement Learning , 1992, NIPS.

[39]  Lonnie Chrisman,et al.  Reinforcement Learning with Perceptual Aliasing: The Perceptual Distinctions Approach , 1992, AAAI.

[40]  Drew McDermott,et al.  Error correction in mobile robot map learning , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[41]  Andreas S. Weigend,et al.  John A. Hertz, Anders S. Krogh, Richard G. Palmer, Introduction to the Theory of Neural Computation , 1993, Artif. Intell..

[42]  Jonas Karlsson,et al.  Learning Multiple Goal Behavior via Task Decomposition and Dynamic Policy Merging , 1993 .

[43]  Sebastian Thrun,et al.  Exploration and model building in mobile robot domains , 1993, IEEE International Conference on Neural Networks.

[44]  Dean A. Pomerleau,et al.  Knowledge-Based Training of Artificial Neural Networks for Autonomous Robot Driving , 1993 .

[45]  Leslie Pack Kaelbling,et al.  Hierarchical Learning in Stochastic Domains: Preliminary Results , 1993, ICML.

[46]  Wolfgang D. Rencken,et al.  Concurrent localisation and map building for mobile robots using ultrasonic sensors , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[47]  Liqiang Feng,et al.  Where am I? : sensors and methods for autonomous mobile robot positioning , 1994 .

[48]  S. Engelson Passive map learning and visual place recognition , 1994 .

[49]  David Kortenkamp,et al.  Topological Mapping for Mobile Robots Using a Combination of Sonar and Vision Sensing , 1994, AAAI.

[50]  S. LaValle,et al.  Motion Planning , 2008, Springer Handbook of Robotics.

[51]  Mark C. Torrance,et al.  Natural communication with robots , 1994 .

[52]  Ingemar J. Cox,et al.  Modeling a Dynamic Environment Using a Bayesian Multiple Hypothesis Approach , 1994, Artif. Intell..

[53]  Lydia E. Kavraki,et al.  Randomized preprocessing of configuration for fast path planning , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[54]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[55]  Andrew McCallum,et al.  Instance-Based State Identification for Reinforcement Learning , 1994, NIPS.

[56]  Maja J. Mataric,et al.  Interaction and intelligent behavior , 1994 .

[57]  Erik Wolfart Position Refinement for a Navigating Robot Using Motion Information Based on Honey Bee Strategies , 1994 .

[58]  Craig A. Knoblock Automatically Generating Abstractions for Planning , 1994, Artif. Intell..

[59]  Benjamin Kuipers,et al.  Learning to Explore and Build Maps , 1994, AAAI.

[60]  Bernt Schiele,et al.  A comparison of position estimation techniques using occupancy grids , 1994, Robotics Auton. Syst..

[61]  Frank E. Schneider Sensorinterpretation und Kartenerstellung fur mobile Roboter , 1994 .

[62]  Sebastian Thrun,et al.  Finding Structure in Reinforcement Learning , 1994, NIPS.

[63]  Bernt Schiele,et al.  A comparison of position estimation techniques using occupancy grids , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[64]  Ewald von Puttkamer,et al.  Keeping track of position and orientation of moving indoor systems by correlation of range-finder scans , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[65]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[66]  Thomas Dean,et al.  Decomposition Techniques for Planning in Stochastic Domains , 1995, IJCAI.

[67]  Reid G. Simmons,et al.  Probabilistic Robot Navigation in Partially Observable Environments , 1995, IJCAI.

[68]  Reid G. Simmons,et al.  The 1994 AAAI Robot Competition and Exhibition , 1995, AI Mag..

[69]  Thomas G. Dietterich,et al.  High-Performance Job-Shop Scheduling With A Time-Delay TD(λ) Network , 1995, NIPS 1995.

[70]  Andrew G. Barto,et al.  Improving Elevator Performance Using Reinforcement Learning , 1995, NIPS.

[71]  Wolfram Burgard,et al.  The Mobile Robot Rhino , 1995, SNN Symposium on Neural Networks.

[72]  David Kortenkamp,et al.  Prototypes, Location, and Associative Networks (PLAN): Towards a Unified Theory of Cognitive Mapping , 1995, Cogn. Sci..

[73]  Illah R. Nourbakhsh,et al.  DERVISH - An Office-Navigating Robot , 1995, AI Mag..

[74]  Andrew G. Barto,et al.  Learning to Act Using Real-Time Dynamic Programming , 1995, Artif. Intell..

[75]  Leslie Pack Kaelbling,et al.  Learning Dynamics: System Identification for Perceptually Challenged Agents , 1995, Artif. Intell..

[76]  Thomas G. Dietterich,et al.  High-Performance Job-Shop Scheduling With A Time-Delay TD-lambda Network , 1995, NIPS.

[77]  Joachim M. Buhmann,et al.  Regularizing phase-based stereo , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[78]  Randall D. Beer,et al.  Spatial learning for navigation in dynamic environments , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[79]  Howie Choset,et al.  Sensor based planning for a planar rod robot , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[80]  C. Lee Giles,et al.  Constructing deterministic finite-state automata in recurrent neural networks , 1996, JACM.

[81]  Wolfram Burgard,et al.  Estimating the Absolute Position of a Mobile Robot Using Position Probability Grids , 1996, AAAI/IAAI, Vol. 2.

[82]  Reid G. Simmons,et al.  Passive Distance Learning for Robot Navigation , 1996, ICML.

[83]  Liqiang Feng,et al.  Navigating Mobile Robots: Systems and Techniques , 1996 .

[84]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[85]  Leslie Pack Kaelbling,et al.  Acting under uncertainty: discrete Bayesian models for mobile-robot navigation , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[86]  Uwe R. Zimmer,et al.  Robust world-modelling and navigation in a real world , 1996, Neurocomputing.

[87]  Wolfram Burgard,et al.  Position tracking with position probability grids , 1996, Proceedings of the First Euromicro Workshop on Advanced Mobile Robots (EUROBOT '96).

[88]  Robert C. Holte,et al.  Speeding up Problem Solving by Abstraction: A Graph Oriented Approach , 1996, Artif. Intell..

[89]  Gregor Schöner,et al.  Dynamics parametrically controlled by image correlations organize robot navigation , 1996, Biological Cybernetics.

[90]  Sebastian Thrun,et al.  Integrating Grid-Based and Topological Maps for Mobile Robot Navigation , 1996, AAAI/IAAI, Vol. 2.

[91]  Joachim M. Buhmann,et al.  Real-time phase-based stereo for a mobile robot , 1996, Proceedings of the First Euromicro Workshop on Advanced Mobile Robots (EUROBOT '96).

[92]  Howie Choset,et al.  Sensor based motion planning: the hierarchical generalized Voronoi graph , 1996 .

[93]  P. Langley,et al.  Place recognition in dynamic environments , 1997, J. Field Robotics.

[94]  Illah R. Nourbakhsh,et al.  The 1996 AAAI Mobile Robot Competition and Exhibition , 1997, AI Mag..

[95]  Howie Choset,et al.  Sensor based planning: a control law for generating the generalized Voronoi graph , 1997, 1997 8th International Conference on Advanced Robotics. Proceedings. ICAR'97.

[96]  Margrit Betke,et al.  Mobile robot localization using landmarks , 1997, IEEE Trans. Robotics Autom..

[97]  Sebastian Thrun,et al.  To Know or Not to Know: On the Utility of Models in Mobile Robotics , 1997 .

[98]  Kurt Konolige,et al.  Many Robots Make Short Work , 1997, AAAI 1997.

[99]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[100]  Wolfram Burgard,et al.  Active Mobile Robot Localization , 1997, IJCAI.

[101]  Wolfram Burgard,et al.  Map learning and high-speed navigation in RHINO , 1998 .