Algorithmic Networks: central time to trigger expected emergent open-endedness

Abstract This article investigates emergence of algorithmic complexity in computable systems that can share information on a network. To this end, we use a theoretical approach from information theory, computability theory, and complex networks theory. One key studied question is how much emergent complexity arises when a population of computable systems is networked compared with when this population is isolated. First, we define a general model for networked theoretical machines, which we call algorithmic networks. Then, we narrow our scope to investigate algorithmic networks that increase the average fitnesses of nodes in a scenario in which each node imitates the fittest neighbor and the randomly generated population is networked by a time-varying graph. We show that there are graph-topological conditions that make these algorithmic networks have the property of expected emergent open-endedness for large enough populations. In other words, the expected emergent algorithmic complexity of a node tends to infinity as the population size tends to infinity. Given a dynamic network, we show that these conditions imply the existence of a central time to trigger expected emergent open-endedness. Moreover, we show that networks with small diameter compared to the network size meet these conditions.

[1]  Cristian S. Calude Information and Randomness: An Algorithmic Perspective , 1994 .

[2]  Alessandro Vespignani,et al.  EPIDEMIC SPREADING IN SCALEFREE NETWORKS , 2001 .

[3]  Eric Fleury,et al.  MultiAspect Graphs: Algebraic representation and algorithms , 2015, Algorithms.

[4]  Alessandro Vespignani,et al.  Epidemic spreading in scale-free networks. , 2000, Physical review letters.

[5]  Randall D. Beer,et al.  Nonnegative Decomposition of Multivariate Information , 2010, ArXiv.

[6]  Sergio M. Focardi,et al.  Is economics an empirical science? If not, can it become one? , 2015, Front. Appl. Math. Stat..

[7]  Gregory J. Chaitin,et al.  A recent technical report , 1974, SIGA.

[8]  George Kampis,et al.  Evolvability of Natural and Artificial Systems , 2011, FET.

[9]  Jari Saramäki,et al.  Path lengths, correlations, and centrality in temporal networks , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Andrew M. Colman,et al.  The complexity of cooperation: Agent-based models of competition and collaboration , 1998, Complex..

[11]  Mikhail Prokopenko,et al.  Self-referential basis of undecidable dynamics: from The Liar Paradox and The Halting Problem to The Edge of Chaos , 2017, Physics of life reviews.

[12]  Hector Zenil,et al.  An Algorithmic Information Calculus for Causal Discovery and Reprogramming Systems , 2017, bioRxiv.

[13]  R. Solé,et al.  Selection, Tinkering, and Emergence in Complex Networks - Crossing the Land of Tinkering , 2002 .

[14]  Hector Zenil,et al.  Algorithmically probable mutations reproduce aspects of evolution, such as convergence rate, genetic memory and modularity , 2017, Royal Society Open Science.

[15]  Béla Bollobás,et al.  Random Graphs , 1985 .

[16]  S. Barry Cooper,et al.  Emergence as a computability-theoretic phenomenon , 2009, Appl. Math. Comput..

[17]  Sara Imari Walker,et al.  The informational architecture of the cell , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  Alastair Channon Passing the ALife Test: Activity Statistics Classify Evolution in Geb as Unbounded , 2001, ECAL.

[19]  Carlo C. Maley,et al.  Four steps toward open-ended evolution , 1999 .

[20]  R. Solé,et al.  Information Theory of Complex Networks: On Evolution and Architectural Constraints , 2004 .

[21]  Jean-Paul Delahaye,et al.  Calculating Kolmogorov Complexity from the Output Frequency Distributions of Small Turing Machines , 2012, PloS one.

[22]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[23]  Christof Koch,et al.  Quantifying synergistic mutual information , 2012, ArXiv.

[24]  Albert-László Barabási,et al.  Scale-Free Networks: A Decade and Beyond , 2009, Science.

[25]  Pietro Perona,et al.  Quantifying synergistic information , 2014 .

[26]  Gregory J. Chaitin,et al.  Algorithmic Information Theory , 1987, IBM J. Res. Dev..

[27]  Bruce Edmonds,et al.  Worldviews, Science, and Us: Philosophy and Complexity. , 2007 .

[28]  S. Havlin,et al.  Scale-free networks are ultrasmall. , 2002, Physical review letters.

[29]  Rodney G. Downey,et al.  Algorithmic Randomness and Complexity , 2010, Theory and Applications of Computability.

[30]  Carlos Gershenson,et al.  Complexity and information: Measuring emergence, self-organization, and homeostasis at multiple scales , 2012, Complex..

[31]  Valmir Carneiro Barbosa,et al.  An introduction to distributed algorithms , 1996 .

[32]  Alessandro Vespignani,et al.  Immunization of complex networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Yoav Shoham,et al.  Multiagent Systems - Algorithmic, Game-Theoretic, and Logical Foundations , 2009 .

[34]  Nan Fang,et al.  Optimal asymptotic bounds on the oracle use in computations from Chaitin's Omega , 2016, J. Comput. Syst. Sci..

[35]  Grégoire Nicolis,et al.  Foundations of Complex Systems , 2009, European Review.

[36]  George Barmpalias,et al.  Computing halting probabilities from other halting probabilities , 2017, Theor. Comput. Sci..

[37]  Hector Zenil,et al.  Algorithmically probable mutations reproduce aspects of evolution such as convergence rate, genetic memory, modularity, diversity explosions, and mass extinction , 2017, ArXiv.

[38]  Wei-Po Lee,et al.  Distributing evolutionary computation in a networked multi-agent environment , 2011, Math. Comput. Model..

[39]  P. Gluckman,et al.  Plasticity, robustness, development and evolution. , 2011, International journal of epidemiology.

[40]  Marina Dolfin,et al.  "Follow the leader" learning dynamics on networks , 2018, Appl. Math. Comput..

[41]  Alexandre Salles da Cunha,et al.  Optimization in Designing Complex Communication Networks , 2012 .

[42]  Hector Zenil,et al.  Correlation of automorphism group size and topological properties with program−size complexity evaluations of graphs and complex networks , 2013, 1306.0322.

[43]  Hector Zenil,et al.  Undecidability and Irreducibility Conditions for Open-Ended Evolution and Emergence , 2016, Artificial Life.

[44]  Denis R. Hirschfeldt,et al.  Algorithmic randomness and complexity. Theory and Applications of Computability , 2012 .

[45]  Béla Bollobás,et al.  The Diameter of a Scale-Free Random Graph , 2004, Comb..

[46]  Artur Ziviani,et al.  Expected Emergent Algorithmic Creativity and Integration in Dynamic Complex Networks , 2018 .

[47]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[48]  Alex Borges Vieira,et al.  Fast centrality-driven diffusion in dynamic networks , 2013, WWW.

[49]  Viola Priesemann,et al.  Bits from Brains for Biologically Inspired Computing , 2014, Front. Robot. AI.

[50]  Mathieu Hoyrup The Decidable Properties of Subrecursive Functions , 2016, ICALP.

[51]  Felipe S. Abrahão,et al.  Metabiología: los orígenes de la creatividad biológica , 2014 .

[52]  Thomas M. Cover,et al.  Elements of Information Theory: Cover/Elements of Information Theory, Second Edition , 2005 .

[53]  Hector Zenil,et al.  The Limits of Decidable States on Open-Ended Evolution and Emergence , 2016, ALIFE.

[54]  Nabil H. Mustafa,et al.  Listen to Your Neighbors: How (Not) to Reach a Consensus , 2004, SIAM J. Discret. Math..

[55]  Alex Borges Vieira,et al.  Time Centrality in Dynamic Complex Networks , 2015, Adv. Complex Syst..

[56]  Felipe S. Abrahão The "paradox" of computability and a recursive relative version of the Busy Beaver function , 2016, ArXiv.

[57]  N. Rashevsky Life, information theory, and topology , 1955 .

[58]  Gregory Chaitin,et al.  Life as Evolving Software , 2012 .

[59]  Eric Fleury,et al.  On MultiAspect graphs , 2014, Theor. Comput. Sci..

[60]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 1997, Texts in Computer Science.

[61]  Hyunju Kim,et al.  New scaling relation for information transfer in biological networks , 2015, Journal of The Royal Society Interface.

[62]  Mark A. Bedau,et al.  Four Puzzles About Life , 1998, Artificial Life.

[63]  Felipe S. Abrahão Relativizing an incompressible number and an incompressible function through subrecursive extensions of Turing machines , 2016, ArXiv.

[64]  John H. Miller,et al.  Complex adaptive systems - an introduction to computational models of social life , 2009, Princeton studies in complexity.

[65]  César A. Hidalgo,et al.  Scale-free networks , 2008, Scholarpedia.

[66]  Iain G. Johnston,et al.  The effect of scale-free topology on the robustness and evolvability of genetic regulatory networks. , 2010, Journal of theoretical biology.

[67]  Carlos Gershenson,et al.  Information Measures of Complexity, Emergence, Self-organization, Homeostasis, and Autopoiesis , 2013, ArXiv.

[68]  Cristian S. Calude Information and Randomness , 2002, Texts in Theoretical Computer Science An EATCS Series.

[69]  Paul G. Spirakis,et al.  Elements of the theory of dynamic networks , 2018, Commun. ACM.

[70]  Andrea E. F. Clementi,et al.  Flooding Time of Edge-Markovian Evolving Graphs , 2010, SIAM J. Discret. Math..

[71]  Ajay D. Kshemkalyani,et al.  Distributed Computing: Principles, Algorithms, and Systems , 2008 .

[72]  L. Margulis Symbiosis in cell evolution: Life and its environment on the early earth , 1981 .

[73]  Mikhail Prokopenko,et al.  An information-theoretic primer on complexity, self-organization, and emergence , 2009 .

[74]  R. Selten,et al.  Game theory and evolutionary biology , 1994 .

[75]  Gregory J. Chaitin,et al.  A Philosophical Perspective on a Metatheory of Biological Evolution , 2018 .

[76]  Jeffrey Shallit,et al.  Proving Darwin: Making Biology Mathematical , 2012 .

[77]  Luís F. Seoane,et al.  Zipf’s Law, unbounded complexity and open-ended evolution , 2016, Journal of the Royal Society Interface.

[78]  Eric Fleury,et al.  A unifying model for representing time-varying graphs , 2014, 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA).

[79]  Peter M. A. Sloot,et al.  Quantifying Synergistic Information Using Intermediate Stochastic Variables , 2016, Entropy.

[80]  Eric Allender,et al.  The pervasive reach of resource-bounded Kolmogorov complexity in computational complexity theory , 2009, J. Comput. Syst. Sci..

[81]  Bernard Testa,et al.  Emergence and Dissolvence in the Self-organisation of Complex Systems , 2000, Entropy.

[82]  Martin Randles,et al.  Distributed redundancy and robustness in complex systems , 2011, J. Comput. Syst. Sci..

[83]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[84]  A. Wagner Robustness and evolvability: a paradox resolved , 2008, Proceedings of the Royal Society B: Biological Sciences.

[85]  Matthias Dehmer,et al.  Entropy and the Complexity of Graphs Revisited , 2012, Entropy.

[86]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[87]  L. E. Clarke,et al.  Probability and Measure , 1980 .

[88]  Jean-Paul Delahaye,et al.  Numerical evaluation of algorithmic complexity for short strings: A glance into the innermost structure of randomness , 2011, Appl. Math. Comput..

[89]  Cristian S. Calude,et al.  Recursively enumerable reals and Chaitin Ω numbers , 2001, Theoretical Computer Science.

[90]  Hector Zenil,et al.  Formal Definitions of Unbounded Evolution and Innovation Reveal Universal Mechanisms for Open-Ended Evolution in Dynamical Systems , 2016, Scientific Reports.

[91]  Artur Ziviani,et al.  Centralities in High Order Networks , 2018, Anais do Encontro de Teoria da Computação (ETC).

[92]  David B. Fogel,et al.  Evolutionary Computation: Toward a New Philosophy of Machine Intelligence (IEEE Press Series on Computational Intelligence) , 2006 .

[93]  Larissa Albantakis,et al.  From the Phenomenology to the Mechanisms of Consciousness: Integrated Information Theory 3.0 , 2014, PLoS Comput. Biol..

[94]  Hector Zenil,et al.  A Decomposition Method for Global Evaluation of Shannon Entropy and Local Estimations of Algorithmic Complexity , 2016, Entropy.

[95]  Frank Schweitzer,et al.  Economic Networks: What Do We Know and What Do We Need to Know? , 2009, Adv. Complex Syst..

[96]  W. Hamilton,et al.  The Evolution of Cooperation , 1984 .

[97]  Dariusz R. Kowalski,et al.  Robust gossiping with an application to consensus , 2006, J. Comput. Syst. Sci..