Constraint-based Task Specification and Estimation for Sensor-Based Robot Systems in the Presence of Geometric Uncertainty

This paper introduces a systematic constraint-based approach to specify complex tasks of general sensor-based robot systems consisting of rigid links and joints. The approach integrates both instantaneous task specification and estimation of geometric uncertainty in a unified framework. Major components are the use of feature coordinates, defined with respect to object and feature frames, which facilitate the task specification, and the introduction of uncertainty coordinates to model geometric uncertainty. While the focus of the paper is on task specification, an existing velocity- based control scheme is reformulated in terms of these feature and uncertainty coordinates. This control scheme compensates for the effect of time varying uncertainty coordinates. Constraint weighting results in an invariant robot behavior in case of conflicting constraints with heterogeneous units. The approach applies to a large variety of robot systems (mobile robots, multiple robot systems, dynamic human-robot interaction, etc.), various sensor systems, and different robot tasks. Ample simulation and experimental results are presented.

[1]  Hendrik Van Brussel,et al.  Compliant Robot Motion I. A Formalism for Specifying Compliant Motion Tasks , 1988, Int. J. Robotics Res..

[2]  Claude Samson,et al.  Robot Control: The Task Function Approach , 1991 .

[3]  Oussama Khatib,et al.  Dynamic control of manipulator in operational space , 1983 .

[4]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[5]  Andrew A. Goldenberg,et al.  Force and position control of manipulators during constrained motion tasks , 1989, IEEE Trans. Robotics Autom..

[6]  Joris De Schutter,et al.  Polyhedral contact formation modeling and identification for autonomous compliant motion , 2003, IEEE Trans. Robotics Autom..

[7]  Joris De Schutter,et al.  Improved force control laws for advanced tracking applications , 1988, ICRA.

[8]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation: Part I—Theory , 1985 .

[9]  Matthew T. Mason,et al.  Compliance and Force Control for Computer Controlled Manipulators , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[10]  Joris De Schutter,et al.  Polyhedral contact formation identification for autonomous compliant motion: exact nonlinear bayesian filtering , 2005, IEEE Transactions on Robotics.

[11]  Patrick Rives,et al.  A new approach to visual servoing in robotics , 1992, IEEE Trans. Robotics Autom..

[12]  Pascal Morin,et al.  A Framework for the Control of Nonholonomic Mobile Manipulators , 2006, Int. J. Robotics Res..

[13]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation , 1984, 1984 American Control Conference.

[14]  Hisashi Tanizaki,et al.  Nonlinear filters , 1993 .

[15]  Joseph Duffy,et al.  The fallacy of modern hybrid control theory that is based on "orthogonal complements" of twist and wrench spaces , 1990, J. Field Robotics.

[16]  Ann Patricia Fothergill,et al.  Inferring the Positions of Bodies from Specified Spatial Relationships , 1974, Artif. Intell..

[17]  K. Anderson,et al.  A Generalized Recursive Coordinate Reduction Method for Multibody System Dynamics , 2003 .

[18]  Christian Laugier,et al.  Integrating assembly planning with compliant control , 1996 .

[19]  Oussama Khatib,et al.  Multi-Link Multi-Contact Force Control for Manipulators , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[20]  Charles A. Klein,et al.  Review of pseudoinverse control for use with kinematically redundant manipulators , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[21]  Michael O. Kolawole,et al.  Estimation and tracking , 2002 .

[22]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[23]  Joris De Schutter,et al.  Estimating First-Order Geometric Parameters and Monitoring Contact Transitions during Force-Controlled Compliant Motion , 1999, Int. J. Robotics Res..

[24]  J. Y. S. Luh,et al.  Resolved-acceleration control of mechanical manipulators , 1980 .

[25]  Zexiang Li,et al.  A unified geometric approach to modeling and control of constrained mechanical systems , 2002, IEEE Trans. Robotics Autom..

[26]  François Chaumette,et al.  Path planning for robust image-based control , 2002, IEEE Trans. Robotics Autom..

[27]  Daniel E. Whitney,et al.  Resolved Motion Rate Control of Manipulators and Human Prostheses , 1969 .

[28]  H. Van Brussel,et al.  Compliant robot motion, I, II , 1988 .

[29]  Javier García de Jalón,et al.  Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge , 1994 .

[30]  Yoshihiko Nakamura,et al.  Advanced robotics - redundancy and optimization , 1990 .

[31]  Joris De Schutter,et al.  Specification of force-controlled actions in the "task frame formalism"-a synthesis , 1996, IEEE Trans. Robotics Autom..

[32]  Hisashi Tanizaki,et al.  Nonlinear Filters: Estimation and Applications , 1993 .

[33]  Homayoon Kazerooni On the Robot Compliant Motion Control , 1989 .

[34]  Keith L. Doty,et al.  A Theory of Generalized Inverses Applied to Robotics , 1993, Int. J. Robotics Res..

[35]  Friedrich M. Wahl,et al.  A task frame formalism for practical implementations , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[36]  Neville Hogan,et al.  Stable execution of contact tasks using impedance control , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[37]  Yaakov Bar-Shalom,et al.  Estimation and Tracking: Principles, Techniques, and Software , 1993 .

[38]  John J. Craig,et al.  Hybrid position/force control of manipulators , 1981 .

[39]  N. Hogan,et al.  Impedance Control:An Approach to Manipulation,Parts I,II,III , 1985 .

[40]  Hendrik Van Brussel,et al.  Compliant Robot Motion II. A Control Approach Based on External Control Loops , 1988, Int. J. Robotics Res..

[41]  A. Doucet,et al.  Parameter estimation in general state-space models using particle methods , 2003 .

[42]  Joseph Duffy,et al.  Hybrid Twist and Wrench Control for a Robotic Manipulator , 1988 .

[43]  Alexander Zelinsky,et al.  Programing by Demonstration: Coping with Suboptimal Teaching Actions , 2003 .

[44]  Joris De Schutter,et al.  Integrated Vision/Force Robotic Servoing in the Task Frame Formalism , 2003, Int. J. Robotics Res..