How Does the Brain Solve Visual Object Recognition?

[1]  D. Zoccolan,et al.  Transformation-Tolerant Object Recognition in Rats Revealed by Visual Priming , 2012, The Journal of Neuroscience.

[2]  M. Carandini,et al.  Normalization as a canonical neural computation , 2011, Nature Reviews Neuroscience.

[3]  P. Roelfsema,et al.  Incremental grouping of image elements in vision , 2011, Attention, perception & psychophysics.

[4]  Clayton E. Curtis,et al.  Perception and Action Selection Dissociate Human Ventral and Dorsal Cortex , 2011, Journal of Cognitive Neuroscience.

[5]  Tatiana A. Engel,et al.  Same or Different? A Neural Circuit Mechanism of Similarity-Based Pattern Match Decision Making , 2011, The Journal of Neuroscience.

[6]  N. Logothetis,et al.  fMRI of the Face-Processing Network in the Ventral Temporal Lobe of Awake and Anesthetized Macaques , 2011, Neuron.

[7]  Nicolas Pinto,et al.  Comparing state-of-the-art visual features on invariant object recognition tasks , 2011, 2011 IEEE Workshop on Applications of Computer Vision (WACV).

[8]  Dwight J. Kravitz,et al.  High-level visual object representations are constrained by position. , 2010, Cerebral cortex.

[9]  Doris Y. Tsao,et al.  Functional Compartmentalization and Viewpoint Generalization Within the Macaque Face-Processing System , 2010, Science.

[10]  Nicole C. Rust,et al.  Selectivity and Tolerance (“Invariance”) Both Increase as Visual Information Propagates from Cortical Area V4 to IT , 2010, The Journal of Neuroscience.

[11]  J. DiCarlo,et al.  Unsupervised Natural Visual Experience Rapidly Reshapes Size-Invariant Object Representation in Inferior Temporal Cortex , 2010, Neuron.

[12]  Timothy A. Machado,et al.  Functional connectivity in the retina at the resolution of photoreceptors , 2010, Nature.

[13]  D. B. Leitch,et al.  Neuron densities vary across and within cortical areas in primates , 2010, Proceedings of the National Academy of Sciences.

[14]  E. Rolls,et al.  Continuous transformation learning of translation invariant representations , 2010, Experimental Brain Research.

[15]  C. Baker,et al.  Informativeness and learning: Response to Gauthier and colleagues , 2010, Trends in Cognitive Sciences.

[16]  Nicole C Rust,et al.  Ambiguity and invariance: two fundamental challenges for visual processing , 2010, Current Opinion in Neurobiology.

[17]  Nicholas A. Steinmetz,et al.  Top-down control of visual attention , 2010, Current Opinion in Neurobiology.

[18]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[19]  H. Komatsu,et al.  Color Selectivity of Neurons in the Posterior Inferior Temporal Cortex of the Macaque Monkey , 2009, Cerebral cortex.

[20]  DiCarlo James,et al.  Human versus machine: comparing visual object recognition systems on a level playing field. , 2010 .

[21]  Dhiraj Joshi,et al.  Object Categorization: Computer and Human Vision Perspectives , 2008 .

[22]  A. Gorea,et al.  On the perceptual/motor dissociation: a review of concepts, theory, experimental paradigms and data interpretations. , 2010, Seeing and perceiving.

[23]  David D. Cox,et al.  A High-Throughput Screening Approach to Discovering Good Forms of Biologically Inspired Visual Representation , 2009, PLoS Comput. Biol..

[24]  Ryan J. Prenger,et al.  Bayesian Reconstruction of Natural Images from Human Brain Activity , 2009, Neuron.

[25]  Yann LeCun,et al.  What is the best multi-stage architecture for object recognition? , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[26]  David D. Cox,et al.  What response properties do individual neurons need to underlie position and clutter "invariant" object recognition? , 2009, Journal of neurophysiology.

[27]  Nicolas Pinto,et al.  How far can you get with a modern face recognition test set using only simple features? , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  James J DiCarlo,et al.  A rodent model for the study of invariant visual object recognition , 2009, Proceedings of the National Academy of Sciences.

[29]  J. Devlin,et al.  Triple Dissociation of Faces, Bodies, and Objects in Extrastriate Cortex , 2009, Current Biology.

[30]  S. Grossberg,et al.  View-invariant object category learning, recognition, and search: How spatial and object attention are coordinated using surface-based attentional shrouds , 2009, Cognitive Psychology.

[31]  Keiji Tanaka,et al.  Matching Categorical Object Representations in Inferior Temporal Cortex of Man and Monkey , 2008, Neuron.

[32]  Doris Y. Tsao,et al.  Comparing face patch systems in macaques and humans , 2008, Proceedings of the National Academy of Sciences.

[33]  Doris Y. Tsao,et al.  Fine-Scale Spatial Organization of Face and Object Selectivity in the Temporal Lobe: Do Functional Magnetic Resonance Imaging, Optical Imaging, and Electrophysiology Agree? , 2008, The Journal of Neuroscience.

[34]  Shimon Ullman,et al.  Unsupervised Classification and Part Localization by Consistency Amplification , 2008, ECCV.

[35]  James J. DiCarlo,et al.  Unsupervised Natural Experience Rapidly Alters Invariant Object Representation in Visual Cortex , 2008, Science.

[36]  Eric T. Carlson,et al.  A neural code for three-dimensional object shape in macaque inferotemporal cortex , 2008, Nature Neuroscience.

[37]  Doris Y. Tsao,et al.  Patches of face-selective cortex in the macaque frontal lobe , 2008, Nature Neuroscience.

[38]  G. Ermentrout,et al.  Reliability, synchrony and noise , 2008, Trends in Neurosciences.

[39]  Doris Y. Tsao,et al.  Mechanisms of face perception. , 2008, Annual review of neuroscience.

[40]  Tomaso A. Poggio,et al.  A Canonical Neural Circuit for Cortical Nonlinear Operations , 2008, Neural Computation.

[41]  M. Carandini,et al.  Functional Mechanisms Shaping Lateral Geniculate Responses to Artificial and Natural Stimuli , 2008, Neuron.

[42]  Dwight J. Kravitz,et al.  How position dependent is visual object recognition? , 2008, Trends in Cognitive Sciences.

[43]  S. Kastner,et al.  Two hierarchically organized neural systems for object information in human visual cortex , 2008, Nature Neuroscience.

[44]  Nicolas Pinto,et al.  Why is Real-World Visual Object Recognition Hard? , 2008, PLoS Comput. Biol..

[45]  S. Gerber,et al.  Unsupervised Natural Experience Rapidly Alters Invariant Object Representation in Visual Cortex , 2008 .

[46]  P. Cavanagh,et al.  Retinotopy of the face aftereffect , 2008, Vision Research.

[47]  Guy A Orban,et al.  Higher order visual processing in macaque extrastriate cortex. , 2008, Physiological reviews.

[48]  D. Field,et al.  Does spatial invariance result from insensitivity to change? , 2016, Journal of vision.

[49]  Tomaso Poggio,et al.  Trade-Off between Object Selectivity and Tolerance in Monkey Inferotemporal Cortex , 2007, The Journal of Neuroscience.

[50]  T. Poggio,et al.  A model of V4 shape selectivity and invariance. , 2007, Journal of neurophysiology.

[51]  David D. Cox,et al.  Untangling invariant object recognition , 2007, Trends in Cognitive Sciences.

[52]  Keiji Tanaka,et al.  Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. , 2007, Journal of neurophysiology.

[53]  A. Kohn Visual adaptation: physiology, mechanisms, and functional benefits. , 2007, Journal of neurophysiology.

[54]  Thomas Serre,et al.  A feedforward architecture accounts for rapid categorization , 2007, Proceedings of the National Academy of Sciences.

[55]  R. Vogels,et al.  Properties of shape tuning of macaque inferior temporal neurons examined using rapid serial visual presentation. , 2007, Journal of neurophysiology.

[56]  Thomas Serre,et al.  Robust Object Recognition with Cortex-Like Mechanisms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[57]  H. Komatsu,et al.  Effects of task demands on the responses of color-selective neurons in the inferior temporal cortex , 2007, Nature Neuroscience.

[58]  S. R. Lehky,et al.  Comparison of shape encoding in primate dorsal and ventral visual pathways. , 2007, Journal of neurophysiology.

[59]  Yoshua. Bengio,et al.  Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[60]  Kenneth F. Valyear,et al.  A double dissociation between sensitivity to changes in object identity and object orientation in the ventral and dorsal visual streams: A human fMRI study , 2006, Neuropsychologia.

[61]  J. Gallant,et al.  Spectral receptive field properties explain shape selectivity in area V4. , 2006, Journal of neurophysiology.

[62]  Keiji Tanaka,et al.  Neuronal Responses to Object Images in the Macaque Inferotemporal Cortex at Different Stimulus Discrimination Levels , 2006, The Journal of Neuroscience.

[63]  R. Kiani,et al.  Microstimulation of inferotemporal cortex influences face categorization , 2006, Nature.

[64]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[65]  John H. R. Maunsell,et al.  Feature-based attention in visual cortex , 2006, Trends in Neurosciences.

[66]  T. Poggio,et al.  Object Selectivity of Local Field Potentials and Spikes in the Macaque Inferior Temporal Cortex , 2006, Neuron.

[67]  E. Halgren,et al.  Top-down facilitation of visual recognition. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Scott L. Brincat,et al.  Dynamic Shape Synthesis in Posterior Inferotemporal Cortex , 2006, Neuron.

[69]  E. Miller,et al.  Experience-dependent sharpening of visual shape selectivity in inferior temporal cortex. , 2005, Cerebral cortex.

[70]  Nicole C. Rust,et al.  In praise of artifice , 2005, Nature Neuroscience.

[71]  E. Rolls,et al.  Scene perception: inferior temporal cortex neurons encode the positions of different objects in the scene , 2005, The European journal of neuroscience.

[72]  Nicole C. Rust,et al.  Do We Know What the Early Visual System Does? , 2005, The Journal of Neuroscience.

[73]  Tomaso Poggio,et al.  Fast Readout of Object Identity from Macaque Inferior Temporal Cortex , 2005, Science.

[74]  Peter Lennie,et al.  Coding of color and form in the geniculostriate visual pathway (invited review). , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[75]  James J DiCarlo,et al.  Multiple Object Response Normalization in Monkey Inferotemporal Cortex , 2005, The Journal of Neuroscience.

[76]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[77]  I. Biederman,et al.  Representation of regular and irregular shapes in macaque inferotemporal cortex. , 2005, Cerebral cortex.

[78]  David D. Cox,et al.  'Breaking' position-invariant object recognition , 2005, Nature Neuroscience.

[79]  David J. Field,et al.  How Close Are We to Understanding V1? , 2005, Neural Computation.

[80]  C. Gross,et al.  Representations of faces and body parts in macaque temporal cortex: a functional MRI study. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[81]  Charles E Connor,et al.  Underlying principles of visual shape selectivity in posterior inferotemporal cortex , 2004, Nature Neuroscience.

[82]  Bruno A Olshausen,et al.  Sparse coding of sensory inputs , 2004, Current Opinion in Neurobiology.

[83]  G. Orban,et al.  Comparative mapping of higher visual areas in monkeys and humans , 2004, Trends in Cognitive Sciences.

[84]  Y. LeCun,et al.  Learning methods for generic object recognition with invariance to pose and lighting , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[85]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[86]  Shimon Ullman,et al.  Recognition invariance obtained by extended and invariant features , 2004, Neural Networks.

[87]  Barry J. Richmond,et al.  Information flow and temporal coding in primate pattern vision , 1995, Journal of Computational Neuroscience.

[88]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[89]  D. Perrett,et al.  Visual neurones responsive to faces in the monkey temporal cortex , 2004, Experimental Brain Research.

[90]  Doris Y. Tsao,et al.  Faces and objects in macaque cerebral cortex , 2003, Nature Neuroscience.

[91]  Tai Sing Lee,et al.  Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[92]  Aapo Hyvärinen,et al.  Simple-Cell-Like Receptive Fields Maximize Temporal Coherence in Natural Video , 2003, Neural Computation.

[93]  N. Logothetis,et al.  Visual Areas in Macaque Cortex Measured Using Functional Magnetic Resonance Imaging , 2002, The Journal of Neuroscience.

[94]  C. Gross Genealogy of the “Grandmother Cell” , 2002, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[95]  M. Tarr,et al.  Visual Object Recognition , 1996, ISTCS.

[96]  Guillaume A. Rousselet,et al.  Parallel processing in high-level categorization of natural images , 2002, Nature Neuroscience.

[97]  I. Biederman,et al.  Effects of illumination intensity and direction on object coding in macaque inferior temporal cortex. , 2002, Cerebral cortex.

[98]  A. Hyvärinen,et al.  A multi-layer sparse coding network learns contour coding from natural images , 2002, Vision Research.

[99]  Terrence J. Sejnowski,et al.  Slow Feature Analysis: Unsupervised Learning of Invariances , 2002, Neural Computation.

[100]  R. Vogels,et al.  Inferotemporal neurons represent low-dimensional configurations of parameterized shapes , 2001, Nature Neuroscience.

[101]  C. Stevens An evolutionary scaling law for the primate visual system and its basis in cortical function , 2001, Nature.

[102]  David L. Sheinberg,et al.  Noticing Familiar Objects in Real World Scenes: The Role of Temporal Cortical Neurons in Natural Vision , 2001, The Journal of Neuroscience.

[103]  Y. Miyashita,et al.  Backward spreading of memory-retrieval signal in the primate temporal cortex. , 2001, Science.

[104]  P. Fldik,et al.  The Speed of Sight , 2001, Journal of Cognitive Neuroscience.

[105]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[106]  Tomaso Poggio,et al.  Models of object recognition , 2000, Nature Neuroscience.

[107]  R. Vogels,et al.  Spatial sensitivity of macaque inferior temporal neurons , 2000, The Journal of comparative neurology.

[108]  R. Reid,et al.  Low Response Variability in Simultaneously Recorded Retinal, Thalamic, and Cortical Neurons , 2000, Neuron.

[109]  E. Rolls Functions of the Primate Temporal Lobe Cortical Visual Areas in Invariant Visual Object and Face Recognition , 2000, Neuron.

[110]  J. Maunsell,et al.  Form representation in monkey inferotemporal cortex is virtually unaltered by free viewing , 2000, Nature Neuroscience.

[111]  H. A. Pham,et al.  Perceptual deficits after lesions of inferotemporal cortex in macaques. , 2000, Cerebral cortex.

[112]  Keiji Tanaka,et al.  Connections between Anterior Inferotemporal Cortex and Superior Temporal Sulcus Regions in the Macaque Monkey , 2000, The Journal of Neuroscience.

[113]  Keiji Tanaka,et al.  Divergent backward projections from the anterior part of the inferotemporal cortex (area TE) in the macaque , 2000, The Journal of comparative neurology.

[114]  G. Orban,et al.  Selectivity for 3D shape that reveals distinct areas within macaque inferior temporal cortex. , 2000, Science.

[115]  H. Sakata,et al.  Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. , 2000, Journal of neurophysiology.

[116]  K. Sen,et al.  Spectral-temporal Receptive Fields of Nonlinear Auditory Neurons Obtained Using Natural Sounds , 2022 .

[117]  Terrence J. Sejnowski,et al.  Learning Overcomplete Representations , 2000, Neural Computation.

[118]  S. Black Neuron to Neuron. , 2000 .

[119]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[120]  R Lawson,et al.  Achieving visual object constancy across plane rotation and depth rotation. , 1999, Acta psychologica.

[121]  T. Poggio,et al.  Are Cortical Models Really Bound by the “Binding Problem”? , 1999, Neuron.

[122]  Kenji Kawano,et al.  Global and fine information coded by single neurons in the temporal visual cortex , 1999, Nature.

[123]  Carrie J. McAdams,et al.  Effects of Attention on the Reliability of Individual Neurons in Monkey Visual Cortex , 1999, Neuron.

[124]  G. Orban,et al.  Shape interactions in macaque inferior temporal neurons. , 1999, Journal of neurophysiology.

[125]  R. Vogels Categorization of complex visual images by rhesus monkeys. Part 2: single‐cell study , 1999, The European journal of neuroscience.

[126]  Shimon Edelman,et al.  Representation and recognition in vision , 1999 .

[127]  John H. R. Maunsell,et al.  Shape selectivity in primate lateral intraparietal cortex , 1998, Nature.

[128]  E. Rolls,et al.  View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. , 1998, Cerebral cortex.

[129]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[130]  J. DiCarlo,et al.  Structure of Receptive Fields in Area 3b of Primary Somatosensory Cortex in the Alert Monkey , 1998, The Journal of Neuroscience.

[131]  S. Thorpe,et al.  Rapid categorization of natural images by rhesus monkeys , 1998, Neuroreport.

[132]  G. Orban,et al.  Responses of macaque inferior temporal neurons to overlapping shapes. , 1997, Cerebral cortex.

[133]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[134]  H. Sakata,et al.  The TINS Lecture The parietal association cortex in depth perception and visual control of hand action , 1997, Trends in Neurosciences.

[135]  Bartlett W. Mel SEEMORE: Combining Color, Shape, and Texture Histogramming in a Neurally Inspired Approach to Visual Object Recognition , 1997, Neural Computation.

[136]  David L. Sheinberg,et al.  The role of temporal cortical areas in perceptual organization. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[137]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[138]  A. Cowey,et al.  Blindsight in man and monkey. , 1997, Brain : a journal of neurology.

[139]  E. Rolls,et al.  INVARIANT FACE AND OBJECT RECOGNITION IN THE VISUAL SYSTEM , 1997, Progress in Neurobiology.

[140]  Jean Bullier,et al.  The Timing of Information Transfer in the Visual System , 1997 .

[141]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[142]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[143]  M. Tovée,et al.  Representational capacity of face coding in monkeys. , 1996, Cerebral cortex.

[144]  J. A. Horel Perception, learning and identification studied with reversible suppression of cortical visual areas in monkeys , 1996, Behavioural Brain Research.

[145]  Eero P. Simoncelli,et al.  Computational models of cortical visual processing. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[146]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[147]  Yoshua Bengio,et al.  LeRec: A NN/HMM Hybrid for On-Line Handwriting Recognition , 1995, Neural Computation.

[148]  P. H. Schiller Effect of lesions in visual cortical area V4 on the recognition of transformed objects , 1995, Nature.

[149]  M. Arbib,et al.  Grasping objects: the cortical mechanisms of visuomotor transformation , 1995, Trends in Neurosciences.

[150]  Geoffrey E. Hinton,et al.  The "wake-sleep" algorithm for unsupervised neural networks. , 1995, Science.

[151]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[152]  G. Orban,et al.  How task-related are the responses of inferior temporal neurons? , 1995, Visual Neuroscience.

[153]  E T Rolls,et al.  Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. , 1995, Journal of neurophysiology.

[154]  H H Bülthoff,et al.  How are three-dimensional objects represented in the brain? , 1994, Cerebral cortex.

[155]  Minami Ito,et al.  Size and position invariance of neuronal responses in monkey inferotemporal cortex. , 1995, Journal of neurophysiology.

[156]  C. Gross,et al.  How inferior temporal cortex became a visual area. , 1994, Cerebral cortex.

[157]  M. Tovée,et al.  Translation invariance in the responses to faces of single neurons in the temporal visual cortical areas of the alert macaque. , 1994, Journal of neurophysiology.

[158]  H. Bülthoff,et al.  Separate neural pathways for the visual analysis of object shape in perception and prehension , 1994, Current Biology.

[159]  N. Logothetis,et al.  View-dependent object recognition by monkeys , 1994, Current Biology.

[160]  N. Logothetis,et al.  Viewer-Centered Object Recognition in Monkeys , 1994 .

[161]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[162]  K. Rockland,et al.  Specific and columnar projection from area TEO to TE in the macaque inferotemporal cortex. , 1993, Cerebral cortex.

[163]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[164]  Y. Miyashita Inferior temporal cortex: where visual perception meets memory. , 1993, Annual review of neuroscience.

[165]  M. Stryker Elements of visual perception , 1992, Nature.

[166]  Gary S. Rubin,et al.  Reading without saccadic eye movements , 1992, Vision Research.

[167]  M. Stryker Neurobiology. Elements of visual perception. , 1992, Nature.

[168]  R. Douglas,et al.  A functional microcircuit for cat visual cortex. , 1991, The Journal of physiology.

[169]  Peter Földiák,et al.  Learning Invariance from Transformation Sequences , 1991, Neural Comput..

[170]  Leslie G. Ungerleider,et al.  Visual topography of area TEO in the macaque , 1991, The Journal of comparative neurology.

[171]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[172]  M. Farah Visual Agnosia: Disorders of Object Recognition and What They Tell Us about Normal Vision , 1990 .

[173]  P. Rakic Specification of cerebral cortical areas. , 1988, Science.

[174]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[175]  B J Richmond,et al.  Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. II. Quantification of response waveform. , 1987, Journal of neurophysiology.

[176]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[177]  L. Weiskrantz,et al.  Impairments of visual object transforms in monkeys. , 1984, Brain : a journal of neurology.

[178]  C. Gross,et al.  Effects of inferior temporal lesions on discrimination of stimuli differing in orientation , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[179]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[180]  David Marr,et al.  VISION A Computational Investigation into the Human Representation and Processing of Visual Information , 2009 .

[181]  E. Iwai,et al.  Further evidence on elevated discrimination limens for reduced patterns in monkeys with inferotemporal lesions , 1982, Neuropsychologia.

[182]  M. Colonnier,et al.  A laminar analysis of the number of neurons, glia, and synapses in the visual cortex (area 17) of adult macaque monkeys , 1982, The Journal of comparative neurology.

[183]  T. Powell,et al.  The basic uniformity in structure of the neocortex. , 1980, Brain : a journal of neurology.

[184]  H. Intraub,et al.  Presentation rate and the representation of briefly glimpsed pictures in memory. , 1980, Journal of experimental psychology. Human learning and memory.

[185]  M. Potter Short-term conceptual memory for pictures. , 1976, Journal of experimental psychology. Human learning and memory.

[186]  D. Hubel,et al.  Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor , 1974, The Journal of comparative neurology.

[187]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[188]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[189]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[190]  G. Bonin,et al.  The neocortex of Macaca mulatta , 1947 .