Hierarchical Motion Planning with Kinodynamic Feasibility Guarantees

Motion planning for mobile vehicles involves the solution of two disparate sub-problems: the satisfaction o f highlevel logical task specifications and the design of low-leve l vehicle control laws. A hierarchical solution of these two sub-problems is efficient, but may not ensure compatibility between the hi ghlevel planner and the dynamic constraints of the vehicle. To guarantee such compatibility, we propose a motion planning framework based on a special interaction between these two levels of planning. In particular, we solve a special shorte st path problem on a graph at the higher level of planning, and we use the lower level planner to determine the costs of the paths inthat graph. The overall approach hinges on two novel ingredients : a graph-search algorithm that operates on sequences of nodes , and a lower-level planner that ensures consistency between the two levels of hierarchy, by providing meaningful costs for the edge transitions of the higher level planner using dynamically feasible, collision-free trajectories.

[1]  Jean-Claude Latombe,et al.  New heuristic algorithms for efficient hierarchical path planning , 1991, IEEE Trans. Robotics Autom..

[2]  Antonio Bicchi,et al.  Symbolic planning and control of robot motion [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[3]  Zvi Shiller,et al.  Dynamic motion planning of autonomous vehicles , 1991, IEEE Trans. Robotics Autom..

[4]  Igor Skrjanc,et al.  Time optimal path planning considering acceleration limits , 2003, Robotics Auton. Syst..

[5]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[6]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[7]  Ahmad A. Masoud,et al.  Kinodynamic Motion Planning , 2010, IEEE Robotics & Automation Magazine.

[8]  Karl Murphy,et al.  Driving Autonomously Offroad up to 35 km/h | NIST , 2000 .

[9]  Calin Belta,et al.  A Fully Automated Framework for Control of Linear Systems from Temporal Logic Specifications , 2008, IEEE Transactions on Automatic Control.

[10]  Panagiotis Tsiotras,et al.  Shortest distance problems in graphs using history-dependent transition costs with application to kinodynamic path planning , 2009, 2009 American Control Conference.

[11]  Hanan Samet,et al.  The Quadtree and Related Hierarchical Data Structures , 1984, CSUR.

[12]  Antoine Girard,et al.  Hierarchical Synthesis of Hybrid Controllers from Temporal Logic Specifications , 2007, HSCC.

[13]  I.I. Hussein,et al.  Real Time Feedback Control for Nonholonomic Mobile Robots With Obstacles , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[14]  Zvi Shiller,et al.  Optimal obstacle avoidance based on the Hamilton-Jacobi-Bellman equation , 1994, IEEE Trans. Robotics Autom..

[15]  Thomas H. Cormen,et al.  Introduction to algorithms [2nd ed.] , 2001 .

[16]  Z. Shiller,et al.  Computation of Path Constrained Time Optimal Motions With Dynamic Singularities , 1992 .

[17]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[18]  Lydia E. Kavraki,et al.  Motion Planning With Dynamics by a Synergistic Combination of Layers of Planning , 2010, IEEE Transactions on Robotics.

[19]  Sunil K. Agrawal,et al.  Trajectory Planning of Differentially Flat Systems with Dynamics and Inequalities , 2000 .

[20]  Zvi Shiller,et al.  On singular time-optimal control along specified paths , 1994, IEEE Trans. Robotics Autom..

[21]  Rodney A. Brooks,et al.  A subdivision algorithm in configuration space for findpath with rotation , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[22]  Jean-Claude Latombe,et al.  Randomized Kinodynamic Motion Planning with Moving Obstacles , 2002, Int. J. Robotics Res..

[23]  Efstathios Bakolas,et al.  A hierarchical on-line path planning scheme using wavelets , 2007, 2007 European Control Conference (ECC).

[24]  Bruce Randall Donald,et al.  Kinodynamic motion planning , 1993, JACM.

[25]  D. Bertsekas,et al.  On the minimax reachability of target sets and target tubes , 1971 .

[26]  Steven M. LaValle,et al.  Simple and Efficient Algorithms for Computing Smooth, Collision-free Feedback Laws Over Given Cell Decompositions , 2009, Int. J. Robotics Res..

[27]  Steven M. LaValle,et al.  Smooth Feedback for Car-Like Vehicles in Polygonal Environments , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[28]  Kyu Ho Park,et al.  A fast path planning by path graph optimization , 2003, IEEE Trans. Syst. Man Cybern. Part A.

[29]  Raghvendra V. Cowlagi,et al.  Kinematic feasibility guarantees in geometric path planning using history-based transition costs over cell decompositions , 2010, Proceedings of the 2010 American Control Conference.

[30]  Thierry Siméon,et al.  Sampling-Based Path Planning on Configuration-Space Costmaps , 2010, IEEE Transactions on Robotics.

[31]  P. Tsiotras,et al.  On the existence and synthesis of curvature-bounded paths inside nonuniform rectangular channels , 2010, Proceedings of the 2010 American Control Conference.

[32]  Larry S. Davis,et al.  Multiresolution path planning for mobile robots , 1986, IEEE J. Robotics Autom..

[33]  Sergey Bereg,et al.  Curvature-bounded traversals of narrow corridors , 2005, Symposium on Computational Geometry.

[34]  Jonathan P. How,et al.  Robust variable horizon model predictive control for vehicle maneuvering , 2006 .

[35]  P. Tsiotras,et al.  Minimum-Time Travel for a Vehicle with Acceleration Limits: Theoretical Analysis and Receding-Horizon Implementation , 2008 .

[36]  F.L. Pereira,et al.  An automatic path planing system for autonomous robotic vehicles , 1993, Proceedings of IECON '93 - 19th Annual Conference of IEEE Industrial Electronics.

[37]  N. Shimkin,et al.  Fast Graph-Search Algorithms for General-Aviation Flight Trajectory Generation , 2005 .

[38]  P. Svestka,et al.  A probabilistic approach to motion planning for car-like robots , 1993 .

[39]  Marin Simina,et al.  Kinodynamic motion planning , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[40]  Sven Behnke,et al.  Local Multiresolution Path Planning , 2003, RoboCup.

[41]  Hiroshi Noborio,et al.  A quadtree-based path-planning algorithm for a mobile robot , 1990, J. Field Robotics.

[42]  E. Feron,et al.  Real-time motion planning for agile autonomous vehicles , 2000, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[43]  Howie Choset,et al.  Composition of local potential functions for global robot control and navigation , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[44]  Bernard Mettler,et al.  Combining On- and Offline Optimization Techniques for Efficient Autonomous Vehicle's Trajectory Planning , 2005 .

[45]  Moëz Cherif Kinodynamic motion planning for all-terrain wheeled vehicles , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[46]  Lydia E. Kavraki,et al.  Randomized preprocessing of configuration for fast path planning , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[47]  Jonathan P. How,et al.  Hybrid Model for Trajectory Planning of Agile Autonomous Vehicles , 2004, J. Aerosp. Comput. Inf. Commun..

[48]  George J. Pappas,et al.  Hybrid Controllers for Path Planning: A Temporal Logic Approach , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[49]  P. Gács,et al.  Algorithms , 1992 .

[50]  Calin Belta,et al.  Discrete abstractions for robot motion planning and control in polygonal environments , 2005, IEEE Transactions on Robotics.