Planning using a Network of Reusable Paths: A Physical Embodiment of a Rapidly Exploring Random Tree

Growing a network of reusable paths is a novel approach to navigation that allows a mobile robot to autonomously seek distant goals in unmapped, GPS-denied environments, which may make it particularly well-suited to rovers used for planetary exploration. A network of reusable paths is an extension to visual-teach-and-repeat systems; instead of a simple chain of poses, there is an arbitrary network. This allows the robot to return to any pose it has previously visited, and it lets a robot plan to reuse previous paths. This paradigm results in closer goal acquisition (through reduced localization error) and a more robust approach to exploration with a mobile robot. It also allows a rover to return a sample to an ascent vehicle with a single command. We show that our network-of-reusable-paths approach is a physical embodiment of the popular rapidly exploring random tree (RRT) planner. Simulation results are presented along with the results from two different robotic test systems. These test systems drove over 14 km in planetary analog environments.

[1]  Paul Timothy Furgale,et al.  Lighting‐invariant Visual Teach and Repeat Using Appearance‐based Lidar , 2013, J. Field Robotics.

[2]  Anthony Stentz,et al.  Planning with uncertainty in position an optimal and efficient planner , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[4]  Joshua A. Marshall,et al.  Autonomous underground tramming for center-articulated vehicles , 2008 .

[5]  Blai Bonet,et al.  Planning with Incomplete Information as Heuristic Search in Belief Space , 2000, AIPS.

[6]  Reid G. Simmons,et al.  Particle RRT for Path Planning with Uncertainty , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[7]  James R. Bergen,et al.  Visual odometry for ground vehicle applications , 2006, J. Field Robotics.

[8]  Thierry Siméon,et al.  Robust motion planning for rough terrain navigation , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[9]  Shin'ichi Yuta,et al.  Autonomous navigation for mobile robots referring pre-recorded image sequence , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[10]  Masayuki Inaba,et al.  View-based approach to robot navigation , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[11]  S. Betge-Brezetz,et al.  Decoupling odometry and exteroceptive perception in building a global world map of a mobile robot: the use of local maps , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[12]  Sebastian Thrun,et al.  Anytime Dynamic A*: An Anytime, Replanning Algorithm , 2005, ICAPS.

[13]  S. LaValle,et al.  Randomized Kinodynamic Planning , 2001 .

[14]  Osamu Takahashi,et al.  Motion planning in a plane using generalized Voronoi diagrams , 1989, IEEE Trans. Robotics Autom..

[15]  Hugh Durrant-Whyte,et al.  Simultaneous localization and mapping (SLAM): part II , 2006 .

[16]  Juan D. Tardós,et al.  Hierarchical SLAM: real-time accurate mapping of large environments , 2005, IEEE Transactions on Robotics.

[17]  Clark F. Olson,et al.  Rover navigation using stereo ego-motion , 2003, Robotics Auton. Syst..

[18]  James L. Crowley,et al.  Appearance based processes for visual navigation , 1997 .

[19]  Andrew Howard,et al.  Multi-robot mapping using manifold representations , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[20]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[21]  Gregory Dudek,et al.  A global topological map formed by local metric maps , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[22]  Anthony Stentz,et al.  Anytime RRTs , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  John E. Moores,et al.  Planetary surface exploration using a network of reusable paths , 2012 .

[24]  Ross A. Knepper,et al.  Differentially constrained mobile robot motion planning in state lattices , 2009 .

[25]  Leo Hartman,et al.  Anytime dynamic path-planning with flexible probabilistic roadmaps , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[26]  Paul Timothy Furgale,et al.  Gaussian Process Gauss-Newton: Non-Parametric State Estimation , 2012, 2012 Ninth Conference on Computer and Robot Vision.

[27]  John Enright,et al.  Visual odometry aided by a sun sensor and inclinometer , 2011, 2011 Aerospace Conference.

[28]  Timothy D. Barfoot,et al.  Path planning on a network of paths , 2011, 2011 Aerospace Conference.

[29]  Ian D. Reid,et al.  Vast-scale Outdoor Navigation Using Adaptive Relative Bundle Adjustment , 2010, Int. J. Robotics Res..

[30]  Paul Timothy Furgale,et al.  Visual Teach and Repeat using appearance-based lidar , 2011, 2012 IEEE International Conference on Robotics and Automation.

[31]  Paul Timothy Furgale,et al.  Continuous-time batch estimation using temporal basis functions , 2012, 2012 IEEE International Conference on Robotics and Automation.

[32]  A. Stentz,et al.  Global Path Planning on Board the Mars Exploration Rovers , 2007, 2007 IEEE Aerospace Conference.

[33]  N. Roy,et al.  The Belief Roadmap: Efficient Planning in Belief Space by Factoring the Covariance , 2009, Int. J. Robotics Res..

[34]  Paul Newman,et al.  Practice makes perfect? Managing and leveraging visual experiences for lifelong navigation , 2012, 2012 IEEE International Conference on Robotics and Automation.

[35]  K. Di,et al.  Rover Localization and Landing Site Mapping Technology for the 2003 Mars Exploration Rover Mission , 2004 .

[36]  Michael Bosse,et al.  Simultaneous Localization and Map Building in Large-Scale Cyclic Environments Using the Atlas Framework , 2004, Int. J. Robotics Res..

[37]  Richard Volpe Navigation Results from Desert Field Tests of the Rocky 7 Mars Rover Prototype , 1999, Int. J. Robotics Res..

[38]  Vincent Lepetit,et al.  View-based Maps , 2010, Int. J. Robotics Res..

[39]  Lindsay Kleeman,et al.  Feature-Based Mapping in Real, Large Scale Environments Using an Ultrasonic Array , 1999, Int. J. Robotics Res..

[40]  John Enright,et al.  Visual odometry aided by a sun sensor and inclinometer , 2011 .

[41]  Lindsay Kleeman,et al.  Robust Appearance Based Visual Route Following for Navigation in Large-scale Outdoor Environments , 2009, Int. J. Robotics Res..

[42]  Paul Timothy Furgale,et al.  Exploiting Reusable Paths in Mobile Robotics: Benefits and Challenges for Long-term Autonomy , 2012, 2012 Ninth Conference on Computer and Robot Vision.

[43]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[44]  Eric Walter,et al.  Reliable robust path planner , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[45]  Anthony Stentz,et al.  Using interpolation to improve path planning: The Field D* algorithm , 2006, J. Field Robotics.

[46]  Bhavani Shankar,et al.  A Mission Control Architecture for robotic lunar sample return as field tested in an analogue deployment to the sudbury impact structure , 2012 .

[47]  Sebastian Thrun,et al.  Stanley: The robot that won the DARPA Grand Challenge , 2006, J. Field Robotics.

[48]  Michel Dhome,et al.  Monocular Vision for Mobile Robot Localization and Autonomous Navigation , 2007, International Journal of Computer Vision.

[49]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[50]  Sven Koenig,et al.  Localization: Approximation and Performance Bounds to Minimize Travel Distance , 2010, IEEE Transactions on Robotics.

[51]  Hang Dong,et al.  Lighting-Invariant Visual Odometry using Lidar Intensity Imagery and Pose Interpolation , 2012, FSR.

[52]  Rodney A. Brooks,et al.  Visual map making for a mobile robot , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[53]  Wolfram Burgard,et al.  Coastal navigation-mobile robot navigation with uncertainty in dynamic environments , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[54]  Timothy D. Barfoot,et al.  Long-range rover localization by matching LIDAR scans to orbital elevation maps , 2010 .

[55]  John E. Moores,et al.  A Series of Robotic and Human Analogue Missions in Support of Lunar Sample Return , 2012 .

[56]  Paul Timothy Furgale,et al.  Towards lighting-invariant visual navigation: An appearance-based approach using scanning laser-rangefinders , 2013, Robotics Auton. Syst..

[57]  Jean-Paul Laumond,et al.  Position referencing and consistent world modeling for mobile robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[58]  Juan D. Tardós,et al.  CI-Graph simultaneous localization and mapping for three-dimensional reconstruction of large and complex environments using a multicamera system , 2010 .

[59]  Alexei Makarenko,et al.  An experiment in integrated exploration , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[60]  Shin'ichi Yuta,et al.  Vision based navigation for mobile robots in indoor environment by teaching and playing-back scheme , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[61]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[62]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[63]  Timothy D. Barfoot,et al.  Path/action planning for a mobile robot , 2013 .

[64]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[65]  Dorian Gálvez-López,et al.  CI-Graph simultaneous localization and mapping for three-dimensional reconstruction of large and complex environments using a multicamera system , 2010, J. Field Robotics.

[66]  Larry H. Matthies,et al.  Two years of Visual Odometry on the Mars Exploration Rovers , 2007, J. Field Robotics.

[67]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[68]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[69]  Benjamin Kuipers,et al.  Local metrical and global topological maps in the hybrid spatial semantic hierarchy , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[70]  Reid G. Simmons,et al.  Recent progress in local and global traversability for planetary rovers , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[71]  Donald S. Fussell,et al.  Computer rendering of stochastic models , 1998 .

[72]  Randall Smith,et al.  Estimating Uncertain Spatial Relationships in Robotics , 1987, Autonomous Robot Vehicles.

[73]  Timothy D. Barfoot,et al.  Visual teach and repeat for long-range rover autonomy , 2010 .

[74]  Masayuki Inaba,et al.  Visual navigation using view-sequenced route representation , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[75]  Reid G. Simmons,et al.  Approaches for heuristically biasing RRT growth , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[76]  Alonzo Kelly,et al.  State space sampling of feasible motions for high‐performance mobile robot navigation in complex environments , 2008, J. Field Robotics.