Stability of Assemblies as a Criterion for Cost Evaluation in Robot Assembly

In this paper we discuss assembly stability as a criterion for cost evaluation in robot assembly. We propose an algorithm for the calculation of the set of potentially stable orientations of arbitrary configurations of rigid bodies considering static friction under uniform gravity. The algorithm determines the magnitudes of the contact forces leading to potential assembly stability using linear programming techniques. A new evaluation function based on the set of potentially stable assembly orientations is proposed and integrated into the assembly cost evaluation of a high level assembly planning system. The proposed stability analysis is an indispensible prerequisite for the execution of robot assembly operations generated by a task-level programming system.

[1]  Sukhan Lee,et al.  Assemblability evaluation based on tolerance propagation , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[2]  Richard S. Palmer Computational Complexity of Motion and Stability of Polygons , 1987 .

[3]  R. Gutsche,et al.  Assembly planning and geometric reasoning for grasping , 1995 .

[4]  Sukhan Lee,et al.  Computer-Aided Mechanical Assembly Planning , 1991 .

[5]  Pradeep K. Khosla,et al.  Gravitational stability of frictionless assemblies , 1995, IEEE Trans. Robotics Autom..

[6]  Joseph M. Miller,et al.  Automatic assembly planning with fasteners , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[7]  Pradeep K. Khosla,et al.  Finding all stable orientations of assemblies with friction , 1996, IEEE Trans. Robotics Autom..

[8]  Michael H. Goldwasser,et al.  AN EFFICIENT SYSTEM FOR GEOMETRIC ASSEMBLY SEQUENCE GENERATION AND EVALUATION , 1995 .

[9]  Edward C. De Meter,et al.  Restraint analysis of assembly work carriers , 1993 .

[10]  J. Trinkle,et al.  On Dynamic Multi‐Rigid‐Body Contact Problems with Coulomb Friction , 1995 .

[11]  Lydia E. Kavraki,et al.  Partitioning a Planar Assembly Into Two Connected Parts is NP-Complete , 1995, Inf. Process. Lett..

[12]  Pradeep K. Khosla,et al.  Finding all gravitationally stable orientations of assemblies , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[13]  Friedrich M. Wahl,et al.  Stability analysis of assemblies considering friction , 1997, IEEE Trans. Robotics Autom..

[14]  Manuel Blum,et al.  A Stability Test for Configurations of Blocks , 1970 .

[15]  Kenneth R. Davis IGRIP Software with the Ergonomic Assessment (Deneb/ERGO) Option, Version 2.4 Deneb Robotics, Inc. 3285 Lapeer Road West Auburn Hills, MI 48321 (810) 377–6900 , 1996 .

[16]  Russell H. Taylor,et al.  Subassembly Stability , 1988, AAAI.

[17]  Per Lötstedt Coulomb Friction in Two-Dimensional Rigid Body Systems , 1981 .

[18]  Sukhan Lee,et al.  Assembly planning based on geometric reasoning , 1990, Comput. Graph..

[19]  Friedrich M. Wahl,et al.  Generating and evaluating stable assembly sequences , 1996, Adv. Robotics.

[20]  Jocelyne Pertin-Trocaz,et al.  Grasping: a state of the art , 1989 .

[21]  Arthur C. Sanderson,et al.  AND/OR graph representation of assembly plans , 1986, IEEE Trans. Robotics Autom..

[22]  Jeffrey C. Trinkle,et al.  Automatic selection of fixture points for frictionless assemblies , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[23]  Michael A. Peshkin,et al.  Force-assembly with friction , 1994, IEEE Trans. Robotics Autom..

[24]  Jan D. Wolter On the automatic generation of assembly plans , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[25]  Oussama Khatib,et al.  The robotics review 1 , 1989 .

[26]  Thomas L. DeFazio,et al.  Simplified generation of all mechanical assembly sequences , 1987, IEEE Journal on Robotics and Automation.

[27]  H.S. Cho,et al.  Disassemblability analysis for generating robotic assembly sequences , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[28]  D. Dutta,et al.  Automatic Disassembly and Total Ordering in Three Dimensions , 1991 .

[29]  Philip Wolfe,et al.  Contributions to the theory of games , 1953 .

[30]  Komei Fukuda,et al.  Double Description Method Revisited , 1995, Combinatorics and Computer Science.

[31]  Karun B. Shimoga,et al.  Robot Grasp Synthesis Algorithms: A Survey , 1996, Int. J. Robotics Res..

[32]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[33]  Michael A. Erdmann,et al.  On a Representation of Friction in Configuration Space , 1994, Int. J. Robotics Res..

[34]  Richard Hoffman A common sense approach to assembly sequence planning , 1991 .

[35]  H. Raiffa,et al.  3. The Double Description Method , 1953 .

[36]  A. Bourjault Methodology of Assembly Automation: A New Approach , 1988 .

[37]  Friedrich M. Wahl,et al.  High LAP: A High Level System for Generating, Representing, and Evaluating Assembly Sequences , 1997, Int. J. Artif. Intell. Tools.

[38]  Randall H. Wilson,et al.  The Archimedes 2 mechanical assembly planning system , 1996, Proceedings of IEEE International Conference on Robotics and Automation.