A modular compliant actuator for emerging high performance and fall-resilient humanoids

The application of humanoids in real world environments necessarily requires robots that can demonstrate physical resilience against strong physical interactions with the environment and impacts, that may occur during falling incidents, that are unavoidable. This paper introduces a modular high performance actuation unit designed to be robust against impacts and strong physical perturbations. The protection against impacts is achieved with the use of elastic transmission combined with soft cover elements on the link side. The paper introduce the details of the actuator design and implementation and discuss the effects of the soft cover and series elastic transmission on the reduction of the impact forces which reach the reduction drive of the actuator during impacts. The model of prototype joint, including the actuator unit, its elastic transmission and the driving link soft cover, is introduced and simulations were performed to study the effect of the elastic properties of the transmission and the soft cover on the reduction of the impact forces transmitted to the reduction drive. The results from the simulations are confirmed by experimental measurements on the real system under induced experimental impact trials, demonstrating the significant effect of the soft cover in the further reduction of impact forces. The performance of the proposed actuator unit in terms of physical robustness makes it ideal for the development of emerging humanoids robots that will be capable of surviving falls and recovers from them.

[1]  Aaron D. Ames,et al.  Valkyrie: NASA's First Bipedal Humanoid Robot , 2015, J. Field Robotics.

[2]  Nikolaos G. Tsagarakis,et al.  Antagonistic and series elastic actuators: a comparative analysis on the energy consumption , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  Nikolaos G. Tsagarakis,et al.  COMpliant huMANoid COMAN: Optimal joint stiffness tuning for modal frequency control , 2013, 2013 IEEE International Conference on Robotics and Automation.

[4]  Atsuo Takanishi,et al.  Development of a new humanoid robot WABIAN-2 , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[5]  Nikolaos G. Tsagarakis,et al.  VSA-CubeBot: A modular variable stiffness platform for multiple degrees of freedom robots , 2011, 2011 IEEE International Conference on Robotics and Automation.

[6]  Manuel G. Catalano,et al.  Variable impedance actuators: A review , 2013, Robotics Auton. Syst..

[7]  Jun-Ho Oh,et al.  Online Biped Walking Pattern Generation for Humanoid Robot KHR-3(KAIST Humanoid Robot - 3: HUBO) , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[8]  Masayuki Inaba,et al.  Development and verification of life-size humanoid with high-output actuation system , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[9]  N. G. Tsagarakis,et al.  A Novel Intrinsically Energy Efficient Actuator With Adjustable Stiffness (AwAS) , 2013, IEEE/ASME Transactions on Mechatronics.

[10]  Nikolaos G. Tsagarakis,et al.  The design of the lower body of the compliant humanoid robot “cCub” , 2011, 2011 IEEE International Conference on Robotics and Automation.

[11]  Nikolaos G. Tsagarakis,et al.  A compact soft actuator unit for small scale human friendly robots , 2009, 2009 IEEE International Conference on Robotics and Automation.

[12]  Alin Albu-Schäffer,et al.  DLR's torque-controlled light weight robot III-are we reaching the technological limits now? , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[13]  Oliver Eiberger,et al.  The DLR FSJ: Energy based design of a variable stiffness joint , 2011, 2011 IEEE International Conference on Robotics and Automation.

[14]  H. Ulbrich,et al.  System Design and Control of Anthropomorphic Walking Robot LOLA , 2009, IEEE/ASME Transactions on Mechatronics.

[15]  Gordon Cheng,et al.  Full-Body Compliant Human–Humanoid Interaction: Balancing in the Presence of Unknown External Forces , 2007, IEEE Transactions on Robotics.

[16]  Alin Albu-Schäffer,et al.  Overview of the torque-controlled humanoid robot TORO , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[17]  Nikolaos G. Tsagarakis,et al.  iCub: the design and realization of an open humanoid platform for cognitive and neuroscience research , 2007, Adv. Robotics.

[18]  Nikolaos G. Tsagarakis,et al.  A Variable Damping module for Variable Impedance Actuation , 2012, 2012 IEEE International Conference on Robotics and Automation.

[19]  Kenichi Ogawa,et al.  Honda humanoid robots development , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.