COMPUTING EQUILIBRIA FOR TWO-PERSON GAMES

This paper is a self-contained survey of algorithms for computing Nash equilibria of two-person games. The games may be given in strategic form or extensive form. The classical Lemke-Howson algorithm finds one equilibrium of a bimatrix game, and provides an elementary proof that a Nash equilibrium exists. It can be given a strong geometric intuition using graphs that show the subdivision of the players' mixed strategy sets into best-response regions. The Lemke-Howson algorithm is presented with these graphs, as well as algebraically in terms of complementary pivoting. Degenerate games require a refinement of the algorithm based on lexicographic perturbations. Commonly used definitions of degenerate games are shown as equivalent. The enumeration of all equilibria is expressed as the problem of finding matching vertices in pairs of polytopes. Algorithms for computing simply stable equilibria and perfect equilibria are explained. The computation of equilibria for extensive games is difficult for larger games since the reduced strategic form may be exponentially large compared to the game tree. If the players have perfect recall, the sequence form of the extensive game is a strategic description that is more suitable for computation. In the sequence form, pure strategies of a player are replaced by sequences of choices along a play in the game. The sequence form has the same size as the game tree, and can be used for computing equilibria with the same methods as the strategic form. The paper concludes with remarks on theoretical and practical issues of concern to these computational approaches.

[1]  H. W. Kuhn,et al.  11. Extensive Games and the Problem of Information , 1953 .

[2]  A Charnes,et al.  Constrained Games and Linear Programming. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[3]  N. Vorob’ev Equilibrium Points in Bimatrix Games , 1958 .

[4]  Harlan D. Mills,et al.  Equilibrium Points in Finite Games , 1960 .

[5]  H W Kuhn,et al.  AN ALGORITHM FOR EQUILIBRIUM POINTS IN BIMATRIX GAMES. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[6]  L. Shapley SOME TOPICS IN TWO-PERSON GAMES , 1963 .

[7]  O. Mangasarian,et al.  Two-person nonzero-sum games and quadratic programming , 1964 .

[8]  O. Mangasarian Equilibrium Points of Bimatrix Games , 1964 .

[9]  C. E. Lemke,et al.  Bimatrix Equilibrium Points and Mathematical Programming , 1965 .

[10]  P. McMullen The maximum numbers of faces of a convex polytope , 1970 .

[11]  Robert Wilson,et al.  Computing Equilibria of N-Person Games , 1971 .

[12]  S. Vajda Some topics in two-person games , 1971 .

[13]  J. Rosenmüller On a Generalization of the Lemke–Howson Algorithm to Noncooperative N-Person Games , 1971 .

[14]  B. Eaves The Linear Complementarity Problem , 1971 .

[15]  J. Howson Equilibria of Polymatrix Games , 1972 .

[16]  Robert Wilson Computing Equilibria of Two-Person Games from the Extensive Form , 1972 .

[17]  William F. Lucas,et al.  An Overview of the Mathematical Theory of Games , 1972 .

[18]  Vijaykumar Aggarwal,et al.  On the generation of all equilibrium points for bimatrix games through the Lemke—Howson Algorithm , 1973, Math. Program..

[19]  B. Curtis Eaves,et al.  Polymatrix Games with Joint Constraints , 1973 .

[20]  C. E. Lemke,et al.  Simplicial Approximation of an Equilibrium Point for Non-Cooperative N-Person Games , 1973 .

[21]  C. B. Millham,et al.  On nash subsets of bimatrix games , 1974 .

[22]  L. Shapley A note on the Lemke-Howson algorithm , 1974 .

[23]  Robert W. Rosenthal,et al.  Bayesian Equilibria of Finite Two-Person Games with Incomplete Information , 1974 .

[24]  R. Selten Reexamination of the perfectness concept for equilibrium points in extensive games , 1975, Classics in Game Theory.

[25]  C. B. Millham,et al.  On nash subsets and mobility chains in bimatrix games , 1976 .

[26]  Michael J. Todd,et al.  Comments on a Note by Aggarwal , 1976 .

[27]  M. Bastian Another note on bimatrix games , 1976, Math. Program..

[28]  R. Myerson Refinements of the Nash equilibrium concept , 1978 .

[29]  Michael J. Todd,et al.  Bimatrix games—an addendum , 1978, Math. Program..

[30]  B. M. Mukhamediev,et al.  The solution of bilinear programming problems and finding the equilibrium situations in bimatrix games , 1978 .

[31]  J. Tomlin Robust implementation of Lemke's method for the linear complementarity problem , 1978 .

[32]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[33]  M. Jansen Maximal nash subsets for bimatrix games , 1981 .

[34]  R. Kellogg,et al.  Pathways to solutions, fixed points, and equilibria , 1983 .

[35]  E. Damme Refinements of the Nash Equilibrium Concept , 1983 .

[36]  R. Selten Evolutionary stability in extensive two-person games , 1983 .

[37]  J. Mertens,et al.  ON THE STRATEGIC STABILITY OF EQUILIBRIA , 1986 .

[38]  E. Damme Stability and perfection of Nash equilibria , 1987 .

[39]  E. Vandamme Stability and perfection of nash equilibria , 1987 .

[40]  Christos H. Papadimitriou,et al.  Exponential lower bounds for finding Brouwer fixed points , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[41]  Reinhard Selten,et al.  Evolutionary stability in extensive two-person games - correction and further development , 1988 .

[42]  Katta G. Murty,et al.  Linear complementarity, linear and nonlinear programming , 1988 .

[43]  John C. Harsanyi,et al.  Общая теория выбора равновесия в играх / A General Theory of Equilibrium Selection in Games , 1989 .

[44]  D. Knuth,et al.  A note on strategy elimination in bimatrix games , 1988 .

[45]  N. Megiddo A Note on the Complexity of P � Matrix LCP and Computing an Equilibrium , 1988 .

[46]  Jean-François Mertens Stable Equilibria - A Reformulation: Part I. Definition and Basic Properties , 1989, Math. Oper. Res..

[47]  Eitan Zemel,et al.  Nash and correlated equilibria: Some complexity considerations , 1989 .

[48]  Eitan Zemel,et al.  On the order of eliminating dominated strategies , 1990 .

[49]  Nimrod MegiddoyNovember The Complexity of Two-Person Zero-Sum Gamesin Extensive FormDaphne Koller , 1990 .

[50]  Peter Sudhölter,et al.  Implementing the modified LH algorithm , 1991 .

[51]  Jan Karel Lenstra,et al.  History of mathematical programming : a collection of personal reminiscences , 1991 .

[52]  Dolf Talman,et al.  A procedure for finding Nash equilibria in bi-matrix games , 1991, ZOR Methods Model. Oper. Res..

[53]  Christos H. Papadimitriou,et al.  On Total Functions, Existence Theorems and Computational Complexity , 1991, Theor. Comput. Sci..

[54]  Nimrod Megiddo,et al.  A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems , 1991, Lecture Notes in Computer Science.

[55]  Jean-François Mertens Stable Equilibria - A Reformulation. Part II. Discussion of the Definition, and Further Results , 1991, Math. Oper. Res..

[56]  David Avis,et al.  A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra , 1991, SCG '91.

[57]  Robert Wilson Computing Simply Stable Equilibria , 1992 .

[58]  Immanuel M. Bomze,et al.  Detecting all evolutionarily stable strategies , 1992 .

[59]  Sergiu Hart,et al.  Games in extensive and strategic forms , 1992 .

[60]  D. Koller,et al.  The complexity of two-person zero-sum games in extensive form , 1992 .

[61]  Antonius Henricus van den Elzen Adjustment Processes for Exchange Economies and Noncooperative Games , 1993 .

[62]  Eitan Zemel,et al.  The Complexity of Eliminating Dominated Strategies , 1993, Math. Oper. Res..

[63]  Todd R. Kaplan,et al.  A Program for Finding Nash Equilibria , 1993 .

[64]  Stef Tijs,et al.  On the structure of the set of perfect equilibria in bimatrix games , 1993 .

[65]  Peter Borm,et al.  On strictly perfect sets , 1994 .

[66]  Nathan Linial,et al.  Game-theoretic aspects of computing , 1994 .

[67]  A.J.J. Talman,et al.  A simplicial algorithm for computing proper Nash equilibria of finite games , 1994 .

[68]  Christos H. Papadimitriou,et al.  On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence , 1994, J. Comput. Syst. Sci..

[69]  G. Ziegler Lectures on Polytopes , 1994 .

[70]  A. J. Vermeulen,et al.  On the set of (perfect) equilibria of a bimatrix game , 1994 .

[71]  Ketan Mulmuley,et al.  Computational geometry - an introduction through randomized algorithms , 1993 .

[72]  Bernhard von Stengel,et al.  Fast algorithms for finding randomized strategies in game trees , 1994, STOC '94.

[73]  M. Shubik,et al.  On the Number of Nash Equilibria in a Bimatrix Game , 1994 .

[74]  A.J.J. Talman,et al.  An algorithmic approach towards the tracing procedure of Harsanyi and Selten , 1995 .

[75]  D. Koller,et al.  Finding mixed strategies with small supports in extensive form games , 1996 .

[76]  D. Koller,et al.  Efficient Computation of Equilibria for Extensive Two-Person Games , 1996 .

[77]  B. Stengel,et al.  Efficient Computation of Behavior Strategies , 1996 .

[78]  E. Kohlberg,et al.  Foundations of Strategic Equilibrium , 1996 .

[79]  R. McKelvey,et al.  Computation of equilibria in finite games , 1996 .

[80]  A.J.J. Talman,et al.  Tracing equilibria in extensive games by complementary pivoting , 1996 .

[81]  Zaifu Yang Simplicial fixed point algorithms and applications , 1996 .

[82]  B. Stengel,et al.  Eecient Computation of Behavior Strategies , 1996 .

[83]  H. Kuk On equilibrium points in bimatrix games , 1996 .

[84]  Bernhard von Stengel,et al.  Computing Normal Form Perfect Equilibria for Extensive Two-Person Games , 2002 .

[85]  Martin Shubik,et al.  A theorem on the number of Nash equilibria in a bimatrix game , 1997, Int. J. Game Theory.

[86]  H. Keiding On the Maximal Number of Nash Equilibria in ann × nBimatrix Game , 1997 .

[87]  Avi Pfeffer,et al.  Representations and Solutions for Game-Theoretic Problems , 1997, Artif. Intell..

[88]  Dries Vermeulen,et al.  The reduced form of a game , 1998, Eur. J. Oper. Res..

[89]  Jörg Bewersdorff,et al.  Symmetric Games , 2022, Luck, Logic, and White Lies.