Balancing Exploration and Exploitation in Sampling-Based Motion Planning

We present the exploring/exploiting tree (EET) algorithm for motion planning. The EET planner deliberately trades probabilistic completeness for computational efficiency. This tradeoff enables the EET planner to outperform state-of-the-art sampling-based planners by up to three orders of magnitude. We show that these considerable speedups apply for a variety of challenging real-world motion planning problems. The performance improvements are achieved by leveraging work space information to continuously adjust the sampling behavior of the planner. When the available information captures the planning problem's inherent structure, the planner's sampler becomes increasingly exploitative. When the available information is less accurate, the planner automatically compensates by increasing local configuration space exploration. We show that active balancing of exploration and exploitation based on workspace information can be a key ingredient to enabling highly efficient motion planning in practical scenarios.

[1]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[2]  Ross A. Knepper,et al.  Real-time informed path sampling for motion planning search , 2012, Int. J. Robotics Res..

[3]  Markus Rickert,et al.  Efficient Motion Planning for Intuitive Task Execution in Modular Manipulation Systems , 2011 .

[4]  Dinesh Manocha,et al.  Randomized Path Planning for a Rigid Body Based on Hardware Accelerated Voronoi Sampling , 1999 .

[5]  Russ Tedrake,et al.  Path planning in 1000+ dimensions using a task-space Voronoi bias , 2009, 2009 IEEE International Conference on Robotics and Automation.

[6]  Thierry Siméon,et al.  Visibility-based probabilistic roadmaps for motion planning , 2000, Adv. Robotics.

[7]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1986 .

[8]  Dinesh Manocha,et al.  A Voronoi-based hybrid motion planner , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[9]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[10]  Thierry Siméon,et al.  Motion planning algorithms for molecular simulations: A survey , 2012, Comput. Sci. Rev..

[11]  Jean-Paul Laumond,et al.  Linear dimensionality reduction in random motion planning , 2011, Int. J. Robotics Res..

[12]  Ming C. Lin,et al.  Constraint-Based Motion Planning Using Voronoi Diagrams , 2002, WAFR.

[13]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[14]  Daniel Vallejo,et al.  OBPRM: an obstacle-based PRM for 3D workspaces , 1998 .

[15]  David Hsu,et al.  The bridge test for sampling narrow passages with probabilistic roadmap planners , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[16]  Thierry Siméon,et al.  Dynamic-Domain RRTs: Efficient Exploration by Controlling the Sampling Domain , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[17]  Nancy M. Amato,et al.  Biasing Samplers to Improve Motion Planning Performance , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[18]  Mark H. Overmars,et al.  The Gaussian sampling strategy for probabilistic roadmap planners , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[19]  Oliver Brock,et al.  Decomposition-based motion planning: a framework for real-time motion planning in high-dimensional configuration spaces , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[20]  Lydia E. Kavraki,et al.  Randomized preprocessing of configuration space for path planning: articulated robots , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[21]  Oliver Brock,et al.  Toward Optimal Configuration Space Sampling , 2005, Robotics: Science and Systems.

[22]  Oliver Brock,et al.  Balancing exploration and exploitation in motion planning , 2008, 2008 IEEE International Conference on Robotics and Automation.

[23]  Steven M. LaValle,et al.  Improving Motion-Planning Algorithms by Efficient Nearest-Neighbor Searching , 2007, IEEE Transactions on Robotics.

[24]  Lydia E. Kavraki,et al.  Discrete Search Leading Continuous Exploration for Kinodynamic Motion Planning , 2007, Robotics: Science and Systems.

[25]  Oliver Brock,et al.  Efficient Motion Planning Based on Disassembly , 2005, Robotics: Science and Systems.

[26]  Nancy M. Amato,et al.  Toggle PRM: Simultaneous mapping of C-free and C-obstacle - A study in 2D - , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[27]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[28]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[29]  Oliver Brock,et al.  Single-Query Motion Planning with Utility-Guided Random Trees , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[30]  David Hsu,et al.  Workspace-Based Connectivity Oracle: An Adaptive Sampling Strategy for PRM Planning , 2006, WAFR.

[31]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[32]  Thierry Siméon,et al.  Adaptive tuning of the sampling domain for dynamic-domain RRTs , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[33]  Thierry Siméon,et al.  Molecular Disassembly With Rrt-Like Algorithms , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[34]  Oliver Brock,et al.  Adapting the sampling distribution in PRM planners based on an approximated medial axis , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[35]  Gino van den Bergen Collision Detection in Interactive 3D Environments , 2003 .

[36]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[37]  Siddhartha S. Srinivasa,et al.  Randomized path planning for redundant manipulators without inverse kinematics , 2007, 2007 7th IEEE-RAS International Conference on Humanoid Robots.

[38]  Gildardo Sánchez-Ante,et al.  Hybrid PRM Sampling with a Cost-Sensitive Adaptive Strategy , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[39]  Lydia E. Kavraki,et al.  A framework for using the workspace medial axis in PRM planners , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[40]  Mark H. Overmars,et al.  Using Workspace Information as a Guide to Non-uniform Sampling in Probabilistic Roadmap Planners , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[41]  Mike Stilman,et al.  Task constrained motion planning in robot joint space , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.