Gaussian Mixture Model for 3-DoF orientations

This paper presents learning and generalization algorithms for Gaussian Mixture Model (GMM) in order to accurately encode 3-DoF orientations and Euclidean variables in a common model. We employ correct displacement, integration and weighted averaging arithmetics for unit quaternions to adapt the learning and generalization methods of standard GMMs.We validate the proposed method in three different applications, learning a 3-dimensional rotation matrix, learning reachable space of a robot, and learning the motion model from demonstrations. We show good experimental results compared to the state-of-the-art method.

[1]  Koji Tsuda,et al.  A Quantum-Statistical-Mechanical Extension of Gaussian Mixture Model , 2008 .

[2]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[3]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[4]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[5]  Yiannis Demiris,et al.  A Quantum-Statistical Approach Towards Robot Learning by Demonstration , 2012 .

[6]  Aude Billard,et al.  Catching Objects in Flight , 2014, IEEE Transactions on Robotics.

[7]  Darwin G. Caldwell,et al.  Learning and Reproduction of Gestures by Imitation , 2010, IEEE Robotics & Automation Magazine.

[8]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[9]  Aude Billard,et al.  Learning Non-linear Multivariate Dynamics of Motion in Robotic Manipulators , 2011, Int. J. Robotics Res..

[10]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[11]  Sandra Hirche,et al.  Gaussian process kernels for rotations and 6D rigid body motions , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[12]  Wendelin Feiten,et al.  MPG - A Framework for Reasoning on 6 DOF Pose Uncertainty , 2017, ArXiv.

[13]  Aude Billard,et al.  Learning to Play Minigolf: A Dynamical System-Based Approach , 2012, Adv. Robotics.

[14]  Aude Billard,et al.  Learning nonlinear multi-variate motion dynamics for real-time position and orientation control of robotic manipulators , 2009, 2009 9th IEEE-RAS International Conference on Humanoid Robots.

[15]  Ales Ude,et al.  Filtering in a unit quaternion space for model-based object tracking , 1999, Robotics Auton. Syst..

[16]  Aude Billard,et al.  Learning motion dynamics to catch a moving object , 2010, 2010 10th IEEE-RAS International Conference on Humanoid Robots.

[17]  T. Yoshikawa,et al.  Task-Priority Based Redundancy Control of Robot Manipulators , 1987 .

[18]  Aude Billard,et al.  On Learning, Representing, and Generalizing a Task in a Humanoid Robot , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[19]  Aude Billard,et al.  Learning Stable Nonlinear Dynamical Systems With Gaussian Mixture Models , 2011, IEEE Transactions on Robotics.

[20]  Adam Morawiec,et al.  Orientations and Rotations , 2004 .

[21]  Christopher Bingham An Antipodally Symmetric Distribution on the Sphere , 1974 .

[22]  Jun Morimoto,et al.  Orientation in Cartesian space dynamic movement primitives , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[23]  Wendelin Feiten,et al.  MPG - Fast Forward Reasoning on 6 DOF Pose Uncertainty , 2012, ROBOTIK.

[24]  Dilan Görür,et al.  Dirichlet process Gaussian mixture models: choice of the base distribution , 2010 .

[25]  Wendelin Feiten,et al.  6D Pose Uncertainty in Robotic Perception , 2009 .

[26]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[27]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[28]  M. J. Prentice Orientation Statistics Without Parametric Assumptions , 1986 .

[29]  R. Fisher Dispersion on a sphere , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.