Separable actions of acetylcholine and noradrenaline on neuronal ensemble formation in hippocampal CA3 circuits

In the hippocampus, episodic memories are thought to be encoded by the formation of ensembles of synaptically coupled CA3 pyramidal cells driven by sparse but powerful mossy fiber inputs from dentate gyrus granule cells. The neuromodulators acetylcholine and noradrenaline are separately proposed as saliency signals that dictate memory encoding but it is not known if they represent distinct signals with separate mechanisms. Here, we show experimentally that acetylcholine, and to a lesser extent noradrenaline, suppress feed-forward inhibition and enhance Excitatory–Inhibitory ratio in the mossy fiber pathway but CA3 recurrent network properties are only altered by acetylcholine. We explore the implications of these findings on CA3 ensemble formation using a hierarchy of models. In reconstructions of CA3 pyramidal cells, mossy fiber pathway disinhibition facilitates postsynaptic dendritic depolarization known to be required for synaptic plasticity at CA3-CA3 recurrent synapses. We further show in a spiking neural network model of CA3 how acetylcholine-specific network alterations can drive rapid overlapping ensemble formation. Thus, through these distinct sets of mechanisms, acetylcholine and noradrenaline facilitate the formation of neuronal ensembles in CA3 that encode salient episodic memories in the hippocampus but acetylcholine selectively enhances the density of memory storage.

[1]  R. Kesner,et al.  The role of the CA3 subregion of the dorsal hippocampus in spatial pattern completion in the rat , 2005, Hippocampus.

[2]  H. Shinozaki,et al.  Activation of metabotropic glutamate receptor type 2/3 suppresses transmission at rat hippocampal mossy fibre synapses. , 1996, The Journal of physiology.

[3]  M. Hasselmo,et al.  Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3 , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  Attila Losonczy,et al.  Dendritic Inhibition in the Hippocampus Supports Fear Learning , 2014, Science.

[5]  U. Gerber,et al.  Mossy fiber-evoked subthreshold responses induce timing-dependent plasticity at hippocampal CA3 recurrent synapses , 2014, Proceedings of the National Academy of Sciences.

[6]  C. Mulle,et al.  Kainate Receptors Act as Conditional Amplifiers of Spike Transmission at Hippocampal Mossy Fiber Synapses , 2009, The Journal of Neuroscience.

[7]  Dayu,et al.  A genetically encoded fluorescent sensor for rapid and 1 specific in vivo detection of norepinephrine 2 3 , 2018 .

[8]  P. Somogyi,et al.  Physiological properties of anatomically identified basket and bistratified cells in the CA1 area of the rat hippocampus in vitro , 1996, Hippocampus.

[9]  Alois Schlögl,et al.  Synaptic mechanisms of pattern completion in the hippocampal CA3 network , 2016, Science.

[10]  Michele Migliore,et al.  Role of an A-Type K+ Conductance in the Back-Propagation of Action Potentials in the Dendrites of Hippocampal Pyramidal Neurons , 1999, Journal of Computational Neuroscience.

[11]  A. Losonczy,et al.  A Role for the Locus Coeruleus in Hippocampal CA1 Place Cell Reorganization during Spatial Reward Learning , 2020, Neuron.

[12]  James J. Knierim,et al.  CA3 Retrieves Coherent Representations from Degraded Input: Direct Evidence for CA3 Pattern Completion and Dentate Gyrus Pattern Separation , 2014, Neuron.

[13]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[14]  Qing Cheng,et al.  Presynaptic α7 Nicotinic Acetylcholine Receptors Enhance Hippocampal Mossy Fiber Glutamatergic Transmission via PKA Activation , 2014, The Journal of Neuroscience.

[15]  K. Roche,et al.  mGluR7 Is a Metaplastic Switch Controlling Bidirectional Plasticity of Feedforward Inhibition , 2005, Neuron.

[16]  James L. McClelland,et al.  Hippocampal conjunctive encoding, storage, and recall: Avoiding a trade‐off , 1994, Hippocampus.

[17]  Martin K. Schwarz,et al.  Adrenergic Gate Release for Spike Timing-Dependent Synaptic Potentiation , 2017, Neuron.

[18]  M. Hasselmo,et al.  Cholinergic suppression of glutamatergic synaptic transmission in hippocampal region CA3 exhibits laminar selectivity: Implication for hippocampal network dynamics , 2007, Neuroscience.

[19]  A. Levey,et al.  Activation of the genetically defined m1 muscarinic receptor potentiates N-methyl-D-aspartate (NMDA) receptor currents in hippocampal pyramidal cells. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Carolyn W. Harley,et al.  Selective wheat germ agglutinin (WGA) uptake in the hippocampus from the locus coeruleus of dopamine-β-hydroxylase-WGA transgenic mice , 2012, Front. Behav. Neurosci..

[21]  J. Mellor,et al.  Acetylcholine prioritises direct synaptic inputs from entorhinal cortex to CA1 by differential modulation of feedforward inhibitory circuits , 2020, Nature Communications.

[22]  Ivan Soltesz,et al.  Functional Specificity of Mossy Fiber Innervation of GABAergic Cells in the Hippocampus , 2009, The Journal of Neuroscience.

[23]  Urs Gerber,et al.  A frequency-dependent switch from inhibition to excitation in a hippocampal unitary circuit , 2004, Nature.

[24]  R. Traub,et al.  Model of the origin of rhythmic population oscillations in the hippocampal slice. , 1989, Science.

[25]  T. Robbins,et al.  The role of cortical cholinergic afferent projections in cognition: impact of new selective immunotoxins , 2000, Behavioural Brain Research.

[26]  R. Morris,et al.  Locus coeruleus and dopaminergic consolidation of everyday memory , 2016, Nature.

[27]  Giorgio A Ascoli,et al.  Distinct classes of pyramidal cells exhibit mutually exclusive firing patterns in hippocampal area CA3b , 2008, Hippocampus.

[28]  D. Johnston,et al.  Muscarinic depression of synaptic transmission at the hippocampal mossy fiber synapse. , 1990, Journal of neurophysiology.

[29]  W. Lytton,et al.  Ih Tunes Theta/Gamma Oscillations and Cross-Frequency Coupling In an In Silico CA3 Model , 2013, PloS one.

[30]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[31]  K. Tóth,et al.  Differential Mechanisms of Transmission at Three Types of Mossy Fiber Synapse , 2000, The Journal of Neuroscience.

[32]  G. Buzsáki,et al.  Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo , 2002, Nature Neuroscience.

[33]  Zbigniew Jedrzejewski-Szmek,et al.  Parameter Optimization Using Covariance Matrix Adaptation—Evolutionary Strategy (CMA-ES), an Approach to Investigate Differences in Channel Properties Between Neuron Subtypes , 2018, Front. Neuroinform..

[34]  C. McBain,et al.  M3 Muscarinic Acetylcholine Receptor Expression Confers Differential Cholinergic Modulation to Neurochemically Distinct Hippocampal Basket Cell Subtypes , 2010, The Journal of Neuroscience.

[35]  S. Tonegawa,et al.  Locus coeruleus input to hippocampal CA3 drives single-trial learning of a novel context , 2017, Proceedings of the National Academy of Sciences.

[36]  G Buzsáki,et al.  GABAergic Cells Are the Major Postsynaptic Targets of Mossy Fibers in the Rat Hippocampus , 1998, The Journal of Neuroscience.

[37]  John P. Lowry,et al.  Coordinated Acetylcholine Release in Prefrontal Cortex and Hippocampus Is Associated with Arousal and Reward on Distinct Timescales , 2017, Cell reports.

[38]  D. Henze,et al.  Dendritic morphology and its effects on the amplitude and rise‐time of synaptic signals in hippocampal CA3 pyramidal cells , 1996, The Journal of comparative neurology.

[39]  Z. Gu,et al.  Timing-Dependent Septal Cholinergic Induction of Dynamic Hippocampal Synaptic Plasticity , 2011, Neuron.

[40]  M. Hasselmo,et al.  Cholinergic modulation of activity-dependent synaptic plasticity in the piriform cortex and associative memory function in a network biophysical simulation , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  M. Scanziani GABA Spillover Activates Postsynaptic GABAB Receptors to Control Rhythmic Hippocampal Activity , 2000, Neuron.

[42]  M. Quirk,et al.  Requirement for Hippocampal CA3 NMDA Receptors in Associative Memory Recall , 2002, Science.

[43]  G. Buzsáki,et al.  Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus , 2014, Proceedings of the National Academy of Sciences.

[44]  S. Nelson,et al.  Hebb and homeostasis in neuronal plasticity , 2000, Current Opinion in Neurobiology.

[45]  Attila Losonczy,et al.  Mnemonic Functions for Nonlinear Dendritic Integration in Hippocampal Pyramidal Circuits , 2016, Neuron.

[46]  Yulia Timofeeva,et al.  Action potential counting at giant mossy fiber terminals gates information transfer in the hippocampus , 2017, Proceedings of the National Academy of Sciences.

[47]  B. Hangya,et al.  Central Cholinergic Neurons Are Rapidly Recruited by Reinforcement Feedback , 2015, Cell.

[48]  A. Draguhn,et al.  Cholinergic Plasticity of Oscillating Neuronal Assemblies in Mouse Hippocampal Slices , 2013, PloS one.

[49]  Jonathan D. Cohen,et al.  Adaptive gain and the role of the locus coeruleus–norepinephrine system in optimal performance , 2005, The Journal of comparative neurology.

[50]  Mark C. W. van Rossum,et al.  Probabilistic inference of short-term synaptic plasticity in neocortical microcircuits , 2013, Front. Comput. Neurosci..

[51]  M. Scanziani,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001, Science.

[52]  G. Buzsáki,et al.  Gamma Oscillations in the Entorhinal Cortex of the Freely Behaving Rat , 1998, The Journal of Neuroscience.

[53]  D. Manahan‐Vaughan,et al.  Learning-facilitated long-term depression and long-term potentiation at mossy fiber—CA3 synapses requires activation of β-adrenergic receptors , 2012, Front. Integr. Neurosci..

[54]  T. Freund,et al.  Differences between Somatic and Dendritic Inhibition in the Hippocampus , 1996, Neuron.

[55]  E. Moser,et al.  Enigmas of the Dentate Gyrus , 2007, Neuron.

[56]  S. Sara The locus coeruleus and noradrenergic modulation of cognition , 2009, Nature Reviews Neuroscience.

[57]  P. Haydon,et al.  Septal Cholinergic Neuromodulation Tunes the Astrocyte-Dependent Gating of Hippocampal NMDA Receptors to Wakefulness , 2017, Neuron.

[58]  Richard Kempter,et al.  Differential modulation of short‐term synaptic dynamics by long‐term potentiation at mouse hippocampal mossy fibre synapses , 2007, The Journal of physiology.

[59]  S. Tonegawa,et al.  Control of CA3 Output by Feedforward Inhibition Despite Developmental Changes in the Excitation–Inhibition Balance , 2010, The Journal of Neuroscience.

[60]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[61]  A. Passmore,et al.  Acetylcholinesterase inhibitors in Alzheimer's disease. , 1999, British journal of clinical pharmacology.

[62]  Luke Y. Prince,et al.  Neuromodulation of the Feedforward Dentate Gyrus-CA3 Microcircuit , 2016, Front. Synaptic Neurosci..

[63]  Henning Sprekeler,et al.  Inhibition as a Binary Switch for Excitatory Plasticity in Pyramidal Neurons , 2016, PLoS Comput. Biol..

[64]  Andrew Philippides,et al.  Dual Coding with STDP in a Spiking Recurrent Neural Network Model of the Hippocampus , 2010, PLoS Comput. Biol..

[65]  C. Stark,et al.  Pattern separation in the hippocampus , 2011, Trends in Neurosciences.

[66]  Wilten Nicola,et al.  A diversity of interneurons and Hebbian plasticity facilitate rapid compressible learning in the hippocampus , 2019, Nature Neuroscience.

[67]  A. T. Gulledge,et al.  M1 and M4 receptors modulate hippocampal pyramidal neurons. , 2011, Journal of Neurophysiology.

[68]  James L. McClelland,et al.  Considerations arising from a complementary learning systems perspective on hippocampus and neocortex , 1996, Hippocampus.

[69]  Facilitation of Long-Term Potentiation by Muscarinic M1 Receptors Is Mediated by Inhibition of SK Channels , 2010, Neuron.

[70]  E. Rolls,et al.  A computational theory of hippocampal function, and empirical tests of the theory , 2006, Progress in Neurobiology.

[71]  Henning Sprekeler,et al.  Inhibitory Plasticity Balances Excitation and Inhibition in Sensory Pathways and Memory Networks , 2011, Science.

[72]  F. Helmchen,et al.  Dendritic NMDA spikes are necessary for timing-dependent associative LTP in CA3 pyramidal cells , 2016, Nature Communications.

[73]  S. Nair,et al.  Intrinsic mechanisms stabilize encoding and retrieval circuits differentially in a hippocampal network model , 2014, Hippocampus.

[74]  U. Stäubli,et al.  Recognition Memory Correlates of Hippocampal Theta Cells , 2001, The Journal of Neuroscience.

[75]  G. Collingridge,et al.  A novel mechanism of hippocampal LTD involving muscarinic receptor-triggered interactions between AMPARs, GRIP and liprin-α , 2009, Molecular Brain.

[76]  P. Strata,et al.  Learning-related feedforward inhibitory connectivity growth required for memory precision , 2011, Nature.

[77]  W. N. Ross,et al.  IPSPs modulate spike backpropagation and associated [Ca2+]i changes in the dendrites of hippocampal CA1 pyramidal neurons. , 1996, Journal of neurophysiology.

[78]  T. Freund,et al.  Distinct synaptic properties of perisomatic inhibitory cell types and their different modulation by cholinergic receptor activation in the CA3 region of the mouse hippocampus , 2010, The European journal of neuroscience.

[79]  E. Rolls,et al.  Computational analysis of the role of the hippocampus in memory , 1994, Hippocampus.

[80]  M Tsodyks,et al.  Attractor neural network models of spatial maps in hippocampus , 1999, Hippocampus.

[81]  Angela J. Yu,et al.  Uncertainty, Neuromodulation, and Attention , 2005, Neuron.

[82]  M. Hasselmo The role of acetylcholine in learning and memory , 2006, Current Opinion in Neurobiology.

[83]  Christophe Mulle,et al.  Operation and plasticity of hippocampal CA3 circuits: implications for memory encoding , 2017, Nature Reviews Neuroscience.

[84]  G. Ascoli,et al.  NeuroMorpho.Org: A Central Resource for Neuronal Morphologies , 2007, The Journal of Neuroscience.

[85]  Francesco Marrosu,et al.  Microdialysis measurement of cortical and hippocampal acetylcholine release during sleep-wake cycle in freely moving cats , 1995, Brain Research.

[86]  Peter Jonas,et al.  Plasticity-dependent, full detonation at hippocampal mossy fiber–CA3 pyramidal neuron synapses , 2016, eLife.

[87]  C. Mulle,et al.  Control of Spike Transfer at Hippocampal Mossy Fiber Synapses In Vivo by GABAA and GABAB Receptor-Mediated Inhibition , 2017, The Journal of Neuroscience.

[88]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[89]  John Rinzel,et al.  Intrinsic and network rhythmogenesis in a reduced traub model for CA3 neurons , 2004, Journal of Computational Neuroscience.

[90]  E. Kandel,et al.  Modulation of Both the Early and the Late Phase of Mossy Fiber LTP by the Activation of β-Adrenergic Receptors , 1996, Neuron.

[91]  E. Rolls,et al.  A computational theory of hippocampal function, and tests of the theory: New developments , 2015, Neuroscience & Biobehavioral Reviews.

[92]  J. Mellor,et al.  Dentate gyrus granule cell firing patterns can induce mossy fiber long‐term potentiation in vitro , 2011, Hippocampus.

[93]  B Sakmann,et al.  Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[94]  D Marr,et al.  Simple memory: a theory for archicortex. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[95]  E. Wagenmakers,et al.  AIC model selection using Akaike weights , 2004, Psychonomic bulletin & review.

[96]  Stephen Coombes,et al.  Modeling sharp wave‐ripple complexes through a CA3‐CA1 network model with chemical synapses , 2012, Hippocampus.

[97]  Chen Sun,et al.  Hippocampal neurons represent events as transferable units of experience , 2020, Nature Neuroscience.

[98]  Dietmar Schmitz,et al.  Synaptic plasticity at hippocampal mossy fibre synapses , 2005, Nature Reviews Neuroscience.

[99]  Eugene M. Izhikevich,et al.  Simple model of spiking neurons , 2003, IEEE Trans. Neural Networks.

[100]  Paul Antoine Salin,et al.  Distinct short-term plasticity at two excitatory synapses in the hippocampus. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[101]  Jon T. Brown,et al.  Activity‐dependent depression of the spike after‐depolarization generates long‐lasting intrinsic plasticity in hippocampal CA3 pyramidal neurons , 2009, The Journal of physiology.

[102]  M. Hasselmo,et al.  Modes and Models of Forebrain Cholinergic Neuromodulation of Cognition , 2011, Neuropsychopharmacology.

[103]  W. Regehr,et al.  Cholinergic Modulation of Excitatory Synaptic Transmission in the CA3 Area of the Hippocampus , 2001, The Journal of Neuroscience.

[104]  B. McNaughton,et al.  Spatial selectivity of unit activity in the hippocampal granular layer , 1993, Hippocampus.

[105]  G. Buzsáki,et al.  Preconfigured, skewed distribution of firing rates in the hippocampus and entorhinal cortex. , 2013, Cell reports.

[106]  D. Amaral,et al.  A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus , 1995, The Journal of comparative neurology.

[107]  H. Markram,et al.  The inositol 1,4,5‐trisphosphate pathway mediates cholinergic potentiation of rat hippocampal neuronal responses to NMDA. , 1992, The Journal of physiology.

[108]  Tobias Bonhoeffer,et al.  Precision of Inhibition: Dendritic Inhibition by Individual GABAergic Synapses on Hippocampal Pyramidal Cells Is Confined in Space and Time , 2015, Neuron.

[109]  P. Frankland,et al.  Development of Adult-Generated Cell Connectivity with Excitatory and Inhibitory Cell Populations in the Hippocampus , 2015, The Journal of Neuroscience.

[110]  M. Sarter,et al.  Article Prefrontal Acetylcholine Release Controls Cue Detection on Multiple Timescales , 2022 .

[111]  David Fernández de Sevilla,et al.  The Muscarinic Long-Term Enhancement of NMDA and AMPA Receptor-Mediated Transmission at Schaffer Collateral Synapses Develop through Different Intracellular Mechanisms , 2010, The Journal of Neuroscience.

[112]  Karl J. Friston,et al.  Locus Coeruleus tracking of prediction errors optimises cognitive flexibility: An Active Inference model , 2018, bioRxiv.

[113]  C. McBain,et al.  Muscarinic receptor activation tunes mouse stratum oriens interneurones to amplify spike reliability , 2006, The Journal of physiology.

[114]  Christian C. Felder,et al.  Activation of Muscarinic M1 Acetylcholine Receptors Induces Long-Term Potentiation in the Hippocampus , 2015, Cerebral cortex.

[115]  Xiao-Li Meng,et al.  POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS VIA REALIZED DISCREPANCIES , 1996 .

[116]  M. Hasselmo,et al.  Cholinergic modulation of cortical associative memory function. , 1992, Journal of neurophysiology.

[117]  Michael E Hasselmo,et al.  Blockade of central cholinergic receptors impairs new learning and increases proactive interference in a word paired-associate memory task. , 2004, Behavioral neuroscience.

[118]  P. Jonas,et al.  Symmetric spike timing-dependent plasticity at CA3–CA3 synapses optimizes storage and recall in autoassociative networks , 2016, Nature Communications.

[119]  Urs Gerber,et al.  Recruitment of an inhibitory hippocampal network after bursting in a single granule cell , 2007, Proceedings of the National Academy of Sciences.

[120]  Mu-ming Poo,et al.  Spike Train Timing-Dependent Associative Modification of Hippocampal CA3 Recurrent Synapses by Mossy Fibers , 2004, Neuron.

[121]  S. Sara,et al.  Network reset: a simplified overarching theory of locus coeruleus noradrenaline function , 2005, Trends in Neurosciences.

[122]  J. Mellor,et al.  Noradrenaline Release from Locus Coeruleus Terminals in the Hippocampus Enhances Excitation-Spike Coupling in CA1 Pyramidal Neurons Via β-Adrenoceptors , 2020, Cerebral cortex.