Soft Robots Modeling: a Literature Unwinding

The robotics community has seen an exponential growth in the level of complexity of the theoretical tools presented for the modeling of soft robotics devices. Different solutions have been presented to overcome the difficulties related to the modeling of soft robots, often leveraging on other scientific disciplines, such as continuum mechanics and computer graphics. These theoretical foundations are often taken for granted and this lead to an intricate literature that, consequently, has never been the subject of a complete review. Withing this scenario, the objective of the presented paper is twofold. The common theoretical roots that relate the different families of modeling techniques are highlighted, employing a unifying language that ease the analysis of their main connections and differences. Thus, the listing of the approaches naturally follows and a complete, untangled, review of the main works on the field is finally provided.

[1]  Dongming Gan,et al.  Discrete Cosserat Approach for Closed-Chain Soft Robots: Application to the Fin-Ray Finger , 2021, IEEE Transactions on Robotics.

[2]  C. Duriez,et al.  Model-Based Control of Soft Robots: A Survey of the State of the Art and Open Challenges , 2021, IEEE Control Systems.

[3]  Clark B. Teeple,et al.  SoMo: Fast and Accurate Simulations of Continuum Robots in Complex Environments , 2021, 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[4]  Ka-Wai Kwok,et al.  A Survey for Machine Learning-Based Control of Continuum Robots , 2021, Frontiers in Robotics and AI.

[5]  Hesheng Wang,et al.  Soft Robotics: Morphology and Morphology-inspired Motion Strategy , 2021, IEEE/CAA Journal of Automatica Sinica.

[6]  Vincent Lebastard,et al.  Dynamics of Continuum and Soft Robots: A Strain Parameterization Based Approach , 2021, IEEE Transactions on Robotics.

[7]  R. Brent Gillespie,et al.  Data-Driven Control of Soft Robots Using Koopman Operator Theory , 2021, IEEE Transactions on Robotics.

[8]  Moritz Bächer,et al.  Design and Control of Soft Robots Using Differentiable Simulation , 2021, Current Robotics Reports.

[9]  Wojciech Matusik,et al.  DiffAqua , 2021, ACM Trans. Graph..

[10]  Christian Duriez,et al.  Real-Time Simulation for Control of Soft Robots With Self-Collisions Using Model Order Reduction for Contact Forces , 2021, IEEE Robotics and Automation Letters.

[11]  Christian Duriez,et al.  Coupling Numerical Deformable Models in Global and Reduced Coordinates for the Simulation of the Direct and the Inverse Kinematics of Soft Robots , 2021, IEEE Robotics and Automation Letters.

[12]  J. Bae,et al.  Review of machine learning methods in soft robotics , 2021, PloS one.

[13]  J. Burgner-Kahrs,et al.  How to Model Tendon-Driven Continuum Robots and Benchmark Modelling Performance , 2021, Frontiers in Robotics and AI.

[14]  Cosimo Della Santina,et al.  The Soft Inverted Pendulum with Affine Curvature , 2020, 2020 59th IEEE Conference on Decision and Control (CDC).

[15]  Michael Yu Wang,et al.  Design Optimization of Soft Robots: A Review of the State of the Art , 2020, IEEE Robotics & Automation Magazine.

[16]  F. Boyer,et al.  A Sliding-Rod Variable-Strain Model for Concentric Tube Robots , 2020, IEEE Robotics and Automation Letters.

[17]  Allison Okamura,et al.  A Dynamics Simulator for Soft Growing Robots* , 2020, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[18]  Yuen Kuan Yong,et al.  Finite Element Modeling of Soft Fluidic Actuators: Overview and Recent Developments , 2020, Adv. Intell. Syst..

[19]  Julie A. Adams,et al.  An Euler–Bernoulli beam model for soft robot arms bent through self-stress and external loads , 2020 .

[20]  Girish Chowdhary,et al.  Elastica: A Compliant Mechanics Environment for Soft Robotic Control , 2020, IEEE Robotics and Automation Letters.

[21]  Andrew L. Orekhov,et al.  Solving Cosserat Rod Models via Collocation and the Magnus Expansion , 2020, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[22]  Gürsel Alici,et al.  Finite Element Modeling in the Design Process of 3D Printed Pneumatic Soft Actuators and Sensors , 2020, Robotics.

[23]  C. Majidi,et al.  Dynamic simulation of articulated soft robots , 2020, Nature Communications.

[24]  Thomas F. Allen,et al.  Closed-Form Non-Singular Constant-Curvature Continuum Manipulator Kinematics , 2020, 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft).

[25]  Vincent Lebastard,et al.  A Geometric Variable-Strain Approach for Static Modeling of Soft Manipulators With Tendon and Fluidic Actuation , 2020, IEEE Robotics and Automation Letters.

[26]  Cosimo Della Santina,et al.  Control Oriented Modeling of Soft Robots: The Polynomial Curvature Case , 2020, IEEE Robotics and Automation Letters.

[27]  Antonio Bicchi,et al.  On an Improved State Parametrization for Soft Robots With Piecewise Constant Curvature and Its Use in Model Based Control , 2020, IEEE Robotics and Automation Letters.

[28]  Kaspar Althoefer,et al.  TMTDyn: A Matlab package for modeling and control of hybrid rigid–continuum robots based on discretized lumped systems and reduced-order models , 2020, Int. J. Robotics Res..

[29]  Bruno Siciliano,et al.  A Geometrically Exact Model for Soft Continuum Robots: The Finite Element Deformation Space Formulation. , 2019, Soft robotics.

[30]  Espen Knoop,et al.  MakeSense: Automated Sensor Design for Proprioceptive Soft Robots. , 2019, Soft robotics.

[31]  Jonathan Rossiter,et al.  Quantifying Dynamic Shapes in Soft Morphologies. , 2019, Soft robotics.

[32]  Hod Lipson,et al.  Titan: A Parallel Asynchronous Library for Multi-Agent and Soft-Body Robotics using NVIDIA CUDA , 2019, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[33]  Annika Raatz,et al.  Kinematic Modeling of a Soft Pneumatic Actuator Using Cubic Hermite Splines , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[34]  I. Walker,et al.  A Lumped-Mass Model for Large Deformation Continuum Surfaces Actuated by Continuum Robotic Arms , 2019, Journal of Mechanisms and Robotics.

[35]  Carmel Majidi,et al.  On Planar Discrete Elastic Rod Models for the Locomotion of Soft Robots. , 2019, Soft robotics.

[36]  Sarthak Misra,et al.  Shape and contact force estimation of continuum manipulators using pseudo rigid body models , 2019, Mechanism and Machine Theory.

[37]  C. Duriez,et al.  Controllability pre-verification of silicone soft robots based on finite-element method , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[38]  John Till,et al.  Real-time dynamics of soft and continuum robots based on Cosserat rod models , 2019, Int. J. Robotics Res..

[39]  Kaspar Althoefer,et al.  Elasticity Versus Hyperelasticity Considerations in Quasistatic Modeling of a Soft Finger-Like Robotic Appendage for Real-Time Position and Force Estimation. , 2019, Soft robotics.

[40]  Cecilia Laschi,et al.  Model-Based Reinforcement Learning for Closed-Loop Dynamic Control of Soft Robotic Manipulators , 2019, IEEE Transactions on Robotics.

[41]  Darina Hroncová,et al.  SNAKE-LIKE ROBOTS , 2018, Acta Mechatronica.

[42]  Ian D. Walker,et al.  Modelling an actuated large deformation soft continuum robot surface undergoing external forces using a lumped-mass approach , 2018 .

[43]  Jiancheng Liu,et al.  ChainQueen: A Real-Time Differentiable Physical Simulator for Soft Robotics , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[44]  Ahmed A Shabana,et al.  Continuum-Based Geometry/Analysis Approach for Flexible and Soft Robotic Systems. , 2018, Soft robotics.

[45]  Christian Duriez,et al.  Fast, Generic, and Reliable Control and Simulation of Soft Robots Using Model Order Reduction , 2018, IEEE Transactions on Robotics.

[46]  Rochdi Merzouki,et al.  Modeling of Continuum Manipulators Using Pythagorean Hodograph Curves. , 2018, Soft robotics.

[47]  Lingfeng Chen,et al.  Soft Robotics: Academic Insights and Perspectives Through Bibliometric Analysis , 2018, Soft robotics.

[48]  L. Mahadevan,et al.  Forward and inverse problems in the mechanics of soft filaments , 2018, Royal Society Open Science.

[49]  Lakmal Seneviratne,et al.  A unified multi-soft-body dynamic model for underwater soft robots , 2018, Int. J. Robotics Res..

[50]  Lakmal D. Seneviratne,et al.  A Geometric and Unified Approach for Modeling Soft-Rigid Multi-Body Systems with Lumped and Distributed Degrees of Freedom , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[51]  Cecilia Laschi,et al.  Control Strategies for Soft Robotic Manipulators: A Survey. , 2018, Soft robotics.

[52]  Jérémie Dequidt,et al.  Software toolkit for modeling, simulation, and control of soft robots , 2017, Adv. Robotics.

[53]  CianchettiMatteo,et al.  Learning Closed Loop Kinematic Controllers for Continuum Manipulators in Unstructured Environments. , 2017, Soft robotics.

[54]  Lakmal Seneviratne,et al.  Screw-Based Modeling of Soft Manipulators With Tendon and Fluidic Actuation , 2017 .

[55]  Markus H. Gross,et al.  A computational design tool for compliant mechanisms , 2017, ACM Trans. Graph..

[56]  S. M. Hadi Sadati,et al.  A Geometry Deformation Model for Braided Continuum Manipulators , 2017, Front. Robot. AI.

[57]  Lakmal Seneviratne,et al.  Discrete Cosserat Approach for Multisection Soft Manipulator Dynamics , 2017, IEEE Transactions on Robotics.

[58]  Frédéric Boyer,et al.  Poincaré’s Equations for Cosserat Media: Application to Shells , 2017, J. Nonlinear Sci..

[59]  D. Bigoni,et al.  From the elastica compass to the elastica catapult: an essay on the mechanics of soft robot arm , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[60]  Seungwan Ryu,et al.  Soft robot review , 2017 .

[61]  Matteo Cianchetti,et al.  Soft robotics: Technologies and systems pushing the boundaries of robot abilities , 2016, Science Robotics.

[62]  Igor Mezic,et al.  Ergodic Theory, Dynamic Mode Decomposition, and Computation of Spectral Properties of the Koopman Operator , 2016, SIAM J. Appl. Dyn. Syst..

[63]  Alexander Popp,et al.  Geometrically Exact Finite Element Formulations for Slender Beams: Kirchhoff–Love Theory Versus Simo–Reissner Theory , 2016, 1609.00119.

[64]  Rochdi Merzouki,et al.  Hybrid Approach for Modeling and Solving of Kinematics of a Compact Bionic Handling Assistant Manipulator , 2016, IEEE/ASME Transactions on Mechatronics.

[65]  Jamie Paik,et al.  Modeling, Design, and Development of Soft Pneumatic Actuators with Finite Element Method   , 2016 .

[66]  S. M. Hadi Sadati,et al.  A geometry deformation model for compound continuum manipulators with external loading , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[67]  Matteo Cianchetti,et al.  Modelling the nonlinear response of fibre-reinforced bending fluidic actuators , 2016, ArXiv.

[68]  Darwin G. Caldwell,et al.  Dynamics for variable length multisection continuum arms , 2016, Int. J. Robotics Res..

[69]  Oliver Sawodny,et al.  Dynamic Modeling of Bellows-Actuated Continuum Robots Using the Euler–Lagrange Formalism , 2015, IEEE Transactions on Robotics.

[70]  Howie Choset,et al.  Continuum Robots for Medical Applications: A Survey , 2015, IEEE Transactions on Robotics.

[71]  F Renda,et al.  Modelling cephalopod-inspired pulsed-jet locomotion for underwater soft robots , 2015, Bioinspiration & biomimetics.

[72]  Gregory S. Chirikjian,et al.  Conformational Modeling of Continuum Structures in Robotics and Structural Biology: A Review , 2015, Adv. Robotics.

[73]  ShapiroYoel,et al.  Modeling a Hyperflexible Planar Bending Actuator as an Inextensible Euler–Bernoulli Beam for Use in Flexible Robots , 2015 .

[74]  D. Rus,et al.  Design, fabrication and control of soft robots , 2015, Nature.

[75]  Robert J. Webster,et al.  Designing snap-free concentric tube robots: A local bifurcation approach , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[76]  Cecilia Laschi,et al.  Neural Network and Jacobian Method for Solving the Inverse Statics of a Cable-Driven Soft Arm With Nonconstant Curvature , 2015, IEEE Transactions on Robotics.

[77]  Robert J. Wood,et al.  Modeling of Soft Fiber-Reinforced Bending Actuators , 2015, IEEE Transactions on Robotics.

[78]  Emanuele Guglielmino,et al.  Modal kinematics for multisection continuum arms , 2015, Bioinspiration & biomimetics.

[79]  M Giorelli,et al.  Learning the inverse kinetics of an octopus-like manipulator in three-dimensional space , 2015, Bioinspiration & biomimetics.

[80]  Pushparaj Mani Pathak,et al.  Kinematic Calibration of a Multisection Bionic Manipulator , 2015, IEEE/ASME Transactions on Mechatronics.

[81]  Rochdi Merzouki,et al.  Adaptive Neural Network Control of a Compact Bionic Handling Arm , 2015, IEEE/ASME Transactions on Mechatronics.

[82]  Dimitris P. Tsakiris,et al.  Multi-arm robotic swimming with octopus-inspired compliant web , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[83]  Pinhas Ben-Tzvi,et al.  Mechanics Modeling of Multisegment Rod-Driven Continuum Robots , 2014 .

[84]  Rajnikant V. Patel,et al.  Kinematic instability in concentric-tube robots: Modeling and analysis , 2014, 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics.

[85]  Rochdi Merzouki,et al.  Inverse Kinematic modeling of a class of continuum bionic handling arm , 2014, 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[86]  Matteo Cianchetti,et al.  Dynamic Model of a Multibending Soft Robot Arm Driven by Cables , 2014, IEEE Transactions on Robotics.

[87]  Jochen J. Steil,et al.  Efficient Exploratory Learning of Inverse Kinematics on a Bionic Elephant Trunk , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[88]  Oliver Sawodny,et al.  A Variable Curvature Continuum Kinematics for Kinematic Control of the Bionic Handling Assistant , 2014, IEEE Transactions on Robotics.

[89]  Pinhas Ben-Tzvi,et al.  Continuum Robot Dynamics Utilizing the Principle of Virtual Power , 2014, IEEE Transactions on Robotics.

[90]  Ian D. Walker,et al.  Continuous Backbone “Continuum” Robot Manipulators , 2013 .

[91]  Oliver Sawodny,et al.  A variable curvature modeling approach for kinematic control of continuum manipulators , 2013, 2013 American Control Conference.

[92]  Rajnikant V. Patel,et al.  A pseudo-rigid-body 3R model for a steerable ablation catheter , 2013, 2013 IEEE International Conference on Robotics and Automation.

[93]  Christian Duriez,et al.  Control of elastic soft robots based on real-time finite element method , 2013, 2013 IEEE International Conference on Robotics and Automation.

[94]  Ilker Tunay,et al.  Spatial Continuum Models of Rods Undergoing Large Deformation and Inflation , 2013, IEEE Transactions on Robotics.

[95]  Pushparaj Mani Pathak,et al.  Geometric modelling of multisection bionic manipulator: Experimental validation on RobotinoXT , 2012, 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[96]  Christian Duriez,et al.  SOFA: A Multi-Model Framework for Interactive Physical Simulation , 2012 .

[97]  M Giorelli,et al.  A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm , 2012, Bioinspiration & biomimetics.

[98]  Eitan Grinspun,et al.  A discrete geometric approach for simulating the dynamics of thin viscous threads , 2012, J. Comput. Phys..

[99]  Jinwoo Jung,et al.  A modeling approach for continuum robotic manipulators: Effects of nonlinear internal device friction , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[100]  Darwin G. Caldwell,et al.  Novel modal approach for kinematics of multisection continuum arms , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[101]  D. Caleb Rucker,et al.  Statics and Dynamics of Continuum Robots With General Tendon Routing and External Loading , 2011, IEEE Transactions on Robotics.

[102]  Darwin G. Caldwell,et al.  Dynamics for biomimetic continuum arms: A modal approach , 2011, 2011 IEEE International Conference on Robotics and Biomimetics.

[103]  Darwin G. Caldwell,et al.  Shape function-based kinematics and dynamics for variable length continuum robotic arms , 2011, 2011 IEEE International Conference on Robotics and Automation.

[104]  Russell H. Taylor,et al.  Design of a new cable-driven manipulator with a large open lumen: Preliminary applications in the minimally-invasive removal of osteolysis , 2011, 2011 IEEE International Conference on Robotics and Automation.

[105]  Robert J. Webster,et al.  Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review , 2010, Int. J. Robotics Res..

[106]  Gregory S. Chirikjian,et al.  Equilibrium Conformations of Concentric-tube Continuum Robots , 2010, Int. J. Robotics Res..

[107]  Kai Xu,et al.  Intrinsic Wrench Estimation and Its Performance Index for Multisegment Continuum Robots , 2010, IEEE Transactions on Robotics.

[108]  D. Caleb Rucker,et al.  A model for concentric tube continuum robots under applied wrenches , 2010, 2010 IEEE International Conference on Robotics and Automation.

[109]  Pierre E. Dupont,et al.  Design and Control of Concentric-Tube Robots , 2010, IEEE Transactions on Robotics.

[110]  Kai Xu,et al.  Analytic Formulation for Kinematics, Statics, and Shape Restoration of Multibackbone Continuum Robots Via Elliptic Integrals , 2010 .

[111]  John Kenneth Salisbury,et al.  Configuration Tracking for Continuum Manipulators With Coupled Tendon Drive , 2009, IEEE Transactions on Robotics.

[112]  Pierre E. Dupont,et al.  Torsional kinematic model for concentric tube robots , 2009, 2009 IEEE International Conference on Robotics and Automation.

[113]  Pål Liljebäck,et al.  A survey on snake robot modeling and locomotion , 2009, Robotica.

[114]  Farrokh Janabi-Sharifi,et al.  Catheter Kinematics for Intracardiac Navigation , 2009, IEEE Transactions on Biomedical Engineering.

[115]  John Kenneth Salisbury,et al.  Mechanics Modeling of Tendon-Driven Continuum Manipulators , 2008, IEEE Transactions on Robotics.

[116]  Eitan Grinspun,et al.  Discrete elastic rods , 2008, ACM Trans. Graph..

[117]  Christopher D. Rahn,et al.  Geometrically Exact Models for Soft Robotic Manipulators , 2008, IEEE Transactions on Robotics.

[118]  Ian D. Walker,et al.  Soft robotics: Biological inspiration, state of the art, and future research , 2008 .

[119]  N. Popescu,et al.  Coil function control problem for a hyperredundant robot , 2007, 2007 IEEE/ASME international conference on advanced intelligent mechatronics.

[120]  Srinivas Neppalli,et al.  Design, construction, and analysis of a continuum robot , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[121]  Ian D. Walker,et al.  A Neural Network Controller for Continuum Robots , 2007, IEEE Transactions on Robotics.

[122]  Stephane Cotin,et al.  EP4A: Software and Computer Based Simulator Research: Development and Outlook SOFA—An Open Source Framework for Medical Simulation , 2007, MMVR.

[123]  D.M. Dawson,et al.  Neural Network Grasping Controller for Continuum Robots , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[124]  Ian D. Walker,et al.  Kinematics for multisection continuum robots , 2006, IEEE Transactions on Robotics.

[125]  Pierre E. Dupont,et al.  A Steerable Needle Technology Using Curved Concentric Tubes , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[126]  Frédéric Boyer,et al.  Macro-continuous computed torque algorithm for a three-dimensional eel-like robot , 2006, IEEE Transactions on Robotics.

[127]  Eitan Grinspun,et al.  Session details: Discrete differential geometry: an applied introduction , 2006, SIGGRAPH 2006.

[128]  Jin Seob Kim,et al.  Nonholonomic Modeling of Needle Steering , 2006, Int. J. Robotics Res..

[129]  Larry L. Howell,et al.  Dynamic Modeling of Compliant Mechanisms Based on the Pseudo-Rigid-Body Model , 2005 .

[130]  Yacine Amirat,et al.  Modeling and Control of a Hybrid Continuum Active Catheter for Aortic Aneurysm Treatment , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[131]  A. D. Lewis,et al.  Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.

[132]  Frédéric Boyer,et al.  Finite element of slender beams in finite transformations: a geometrically exact approach , 2004 .

[133]  T. Suzuki,et al.  Dynamical modelling of a hyper-flexible manipulator , 2002, Proceedings of the 41st SICE Annual Conference. SICE 2002..

[134]  Ian D. Walker,et al.  Large deflection dynamics and control for planar continuum robots , 2001 .

[135]  Pierre Lopez,et al.  Modeling and control of McKibben artificial muscle robot actuators , 2000 .

[136]  A. Ibrahimbegovic,et al.  Finite rotations in dynamics of beams and implicit time-stepping schemes , 1998 .

[137]  Piero Villaggio,et al.  Mathematical Models for Elastic Structures , 1997 .

[138]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[139]  M. Géradin,et al.  A beam finite element non‐linear theory with finite rotations , 1988 .

[140]  Jasbir S. Arora,et al.  Introduction to Optimum Design , 1988 .

[141]  J. C. Simo,et al.  A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .

[142]  J. C. Simo,et al.  A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .

[143]  E. Reissner On finite deformations of space-curved beams , 1981 .

[144]  E. Reissner On one-dimensional finite-strain beam theory: The plane problem , 1972 .

[145]  Ikhlas Mohamed Ben Hmida,et al.  SoRoSim: a MATLAB Toolbox for Soft Robotics Based on the Geometric Variable-strain Approach , 2021, ArXiv.

[146]  Ian D. Walker,et al.  Cosserat Rod-Based Dynamic Modeling of Tendon-Driven Continuum Robots: A Tutorial , 2021, IEEE Access.

[147]  Timothy R. Langlois,et al.  Incremental Potential Contact: Intersection- and Inversion-free, Large-Deformation Dynamics , 2020 .

[148]  Christian Duriez,et al.  Control Design for Soft Robots Based on Reduced-Order Model , 2019, IEEE Robotics and Automation Letters.

[149]  S. M. Hadi Sadati,et al.  Control Space Reduction and Real-Time Accurate Modeling of Continuum Manipulators Using Ritz and Ritz–Galerkin Methods , 2018, IEEE Robotics and Automation Letters.

[150]  Ian D. Walker,et al.  A Comparison of Constant Curvature Forward Kinematics for Multisection Continuum Manipulators , 2018, 2018 Second IEEE International Conference on Robotic Computing (IRC).

[151]  Rochdi Merzouki,et al.  Qualitative approach for forward kinematic modeling of a Compact Bionic Handling Assistant trunk , 2014 .

[152]  Olivier Bruls,et al.  Geometrically exact beam finite element formulated on the special Euclidean group SE(3) , 2014 .

[153]  Victor A. Eremeyev,et al.  Cosserat-Type Rods , 2013 .

[154]  E. Grinspun,et al.  Discrete viscous threads , 2010, ACM Trans. Graph..

[155]  E. Grinspun Discrete differential geometry : An applied introduction , 2008, SIGGRAPH 2008.

[156]  Gregory S. Chirikjian,et al.  Hyper-redundant manipulator dynamics: a continuum approximation , 1994, Adv. Robotics.

[157]  Shigeo Hirose,et al.  Biologically Inspired Robots: Snake-Like Locomotors and Manipulators , 1993 .

[158]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[159]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[160]  G. M.,et al.  A Treatise on the Mathematical Theory of Elasticity , 1906, Nature.