Concept cells: the building blocks of declarative memory functions

Intracranial recordings in subjects suffering from intractable epilepsy — made during their evaluation for an eventual surgical removal of the epileptic focus — have allowed the extraordinary opportunity to study the firing of multiple single neurons in awake and behaving human subjects. These studies have shown that neurons in the human medial temporal lobe respond in a remarkably selective and abstract manner to particular persons or objects, such as Jennifer Aniston, Luke Skywalker or the Tower of Pisa. These neurons have been named 'Jennifer Aniston neurons' or, more recently, 'concept cells'. I argue that the sparse, explicit and abstract representation of these neurons is crucial for memory functions, such as the creation of associations and the transition between related concepts that leads to episodic memories and the flow of consciousness.

[1]  W. Scoville,et al.  LOSS OF RECENT MEMORY AFTER BILATERAL HIPPOCAMPAL LESIONS , 1957, Journal of neurology, neurosurgery, and psychiatry.

[2]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[3]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[4]  B. Milner,et al.  Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of H.M.☆ , 1968 .

[5]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[6]  D. Marr A theory for cerebral neocortex , 1970, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[7]  D Marr,et al.  Simple memory: a theory for archicortex. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[8]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[9]  T. Babb,et al.  Analysis of extracellular firing patterns of deep temporal lobe structures in man. , 1973, Electroencephalography and clinical neurophysiology.

[10]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[11]  R. F. Thompson,et al.  Neuronal substrate of classical conditioning in the hippocampus , 1976, Science.

[12]  M. Mishkin Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus , 1978, Nature.

[13]  D. Schacter,et al.  Implicit and explicit memory for new associations in normal and amnesic subjects. , 1985, Journal of experimental psychology. Learning, memory, and cognition.

[14]  T. Teyler,et al.  The hippocampal memory indexing theory. , 1986, Behavioral neuroscience.

[15]  J. B. Ranck,et al.  Spatial firing patterns of hippocampal complex-spike cells in a fixed environment , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  T. Teyler Long-term potentiation and memory. , 1987, International journal of neurology.

[17]  H. Farmer A new perspective. , 1988, The Journal of the Florida Medical Association.

[18]  E. Halgren,et al.  Neural encoding of individual words and faces by the human hippocampus and amygdala , 1988, Nature.

[19]  Lucien T. Thompson,et al.  Long-term stability of the place-field activity of single units recorded from the dorsal hippocampus of freely behaving rats , 1990, Brain Research.

[20]  E. Halgren,et al.  Neuronal activity in the human medial temporal lobe during recognition memory. , 1990, Brain : a journal of neurology.

[21]  R. Muller,et al.  The firing of hippocampal place cells in the dark depends on the rat's recent experience , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  L. Squire,et al.  The medial temporal lobe memory system , 1991, Science.

[23]  E. Capaldi,et al.  The organization of behavior. , 1992, Journal of applied behavior analysis.

[24]  B L McNaughton,et al.  Dynamics of the hippocampal ensemble code for space. , 1993, Science.

[25]  P. Somogyi,et al.  The hippocampal CA3 network: An in vivo intracellular labeling study , 1994, The Journal of comparative neurology.

[26]  C. Gross,et al.  How inferior temporal cortex became a visual area. , 1994, Cerebral cortex.

[27]  James L. McClelland,et al.  Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. , 1995, Psychological review.

[28]  G. Buzsáki,et al.  Hippocampal CA1 interneurons: an in vivo intracellular labeling study , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  M. Tovée,et al.  Representational capacity of face coding in monkeys. , 1996, Cerebral cortex.

[30]  K. Tanaka,et al.  Divergent Projections from the Anterior Inferotemporal Area TE to the Perirhinal and Entorhinal Cortices in the Macaque Monkey , 1996, The Journal of Neuroscience.

[31]  E. Kandel,et al.  Mice Expressing Activated CaMKII Lack Low Frequency LTP and Do Not Form Stable Place Cells in the CA1 Region of the Hippocampus , 1996, Cell.

[32]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[33]  Wendy A. Suzuki,et al.  Neuroanatomy of the monkey entorhinal, perirhinal and parahippocampal cortices: Organization of cortical inputs and interconnections with amygdala and striatum , 1996 .

[34]  M. Kahana Associative retrieval processes in free recall , 1996, Memory & cognition.

[35]  B. McNaughton,et al.  Replay of Neuronal Firing Sequences in Rat Hippocampus During Sleep Following Spatial Experience , 1996, Science.

[36]  David L. Sheinberg,et al.  Visual object recognition. , 1996, Annual review of neuroscience.

[37]  M. Mishkin,et al.  Differential effects of early hippocampal pathology on episodic and semantic memory. , 1997, Science.

[38]  Charles L. Wilson,et al.  Single Neuron Activity in Human Hippocampus and Amygdala during Recognition of Faces and Objects , 1997, Neuron.

[39]  L. Nadel,et al.  Memory consolidation, retrograde amnesia and the hippocampal complex , 1997, Current Opinion in Neurobiology.

[40]  John Hallam,et al.  Marr's Theory of the Neocortex as a Self-Organizing Neural Network , 1997, Neural Computation.

[41]  R. Nicoll,et al.  Brain-Derived Neurotrophic Factor ( BDNF ) Modulates Inhibitory , But Not Excitatory , Transmission in the CA 1 Region of the Hippocampus , 1998 .

[42]  H Eichenbaum,et al.  Abnormal hippocampal spatial representations in alphaCaMKIIT286A and CREBalphaDelta- mice. , 1998, Science.

[43]  H. Eichenbaum,et al.  The Hippocampus, Memory, and Place Cells Is It Spatial Memory or a Memory Space? , 1999, Neuron.

[44]  C. Koch,et al.  Imagery neurons in the human brain , 2000, Nature.

[45]  C. Koch,et al.  Category-specific visual responses of single neurons in the human medial temporal lobe , 2000, Nature Neuroscience.

[46]  D. Amaral,et al.  Hippocampal‐neocortical interaction: A hierarchy of associativity , 2000, Hippocampus.

[47]  H. Eichenbaum A cortical–hippocampal system for declarative memory , 2000, Nature Reviews Neuroscience.

[48]  M. Wilson,et al.  Temporally Structured Replay of Awake Hippocampal Ensemble Activity during Rapid Eye Movement Sleep , 2001, Neuron.

[49]  Y. Miyashita,et al.  Backward spreading of memory-retrieval signal in the primate temporal cortex. , 2001, Science.

[50]  B. McNaughton,et al.  Independence of Firing Correlates of Anatomically Proximate Hippocampal Pyramidal Cells , 2001, The Journal of Neuroscience.

[51]  David J. Freedman,et al.  Categorical representation of visual stimuli in the primate prefrontal cortex. , 2001, Science.

[52]  A. Smit,et al.  Synapse Formation between Central Neurons Requires Postsynaptic Expression of the MEN1 Tumor Suppressor Gene , 2001, The Journal of Neuroscience.

[53]  L. Squire,et al.  Neuronal representations of stimulus associations develop in the temporal lobe during learning , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Itzhak Fried,et al.  Human Hippocampal Neurons Predict How Well Word Pairs Will Be Remembered , 2001, Neuron.

[55]  M. Shapiro,et al.  Plasticity, hippocampal place cells, and cognitive maps. , 2001, Archives of neurology.

[56]  S. Corkin What's new with the amnesic patient H.M.? , 2002, Nature Reviews Neuroscience.

[57]  R. O’Reilly,et al.  Opinion TRENDS in Cognitive Sciences Vol.6 No.12 December 2002 , 2022 .

[58]  Glenn C. Turner,et al.  Oscillations and Sparsening of Odor Representations in the Mushroom Body , 2002, Science.

[59]  E. Maguire,et al.  The Human Hippocampus and Spatial and Episodic Memory , 2002, Neuron.

[60]  C. Gross Genealogy of the “Grandmother Cell” , 2002, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[61]  Albert K. Lee,et al.  Memory of Sequential Experience in the Hippocampus during Slow Wave Sleep , 2002, Neuron.

[62]  H. Eichenbaum,et al.  Critical role of the hippocampus in memory for sequences of events , 2002, Nature Neuroscience.

[63]  L. Frank,et al.  Single Neurons in the Monkey Hippocampus and Learning of New Associations , 2003, Science.

[64]  M. Fabre-Thorpe Visual categorization: accessing abstraction in non-human primates. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[65]  F. Theunissen From synchrony to sparseness , 2003, Trends in Neurosciences.

[66]  Bruno A Olshausen,et al.  Sparse coding of sensory inputs , 2004, Current Opinion in Neurobiology.

[67]  R. Clark,et al.  The medial temporal lobe. , 2004, Annual review of neuroscience.

[68]  I. Gauthier,et al.  Visual object understanding , 2004, Nature Reviews Neuroscience.

[69]  R. Quian Quiroga,et al.  Unsupervised Spike Detection and Sorting with Wavelets and Superparamagnetic Clustering , 2004, Neural Computation.

[70]  Yasushi Miyashita,et al.  Cognitive Memory: Cellular and Network Machineries and Their Top-Down Control , 2004, Science.

[71]  H. Eichenbaum Hippocampus Cognitive Processes and Neural Representations that Underlie Declarative Memory , 2004, Neuron.

[72]  E. Tulving [Episodic memory: from mind to brain]. , 2004, Revue neurologique.

[73]  Neil Burgess,et al.  Attractor Dynamics in the Hippocampal Representation of the Local Environment , 2005, Science.

[74]  G. Buzsáki Theta rhythm of navigation: Link between path integration and landmark navigation, episodic and semantic memory , 2005, Hippocampus.

[75]  S. Schanberg,et al.  Visual Receptive Fields of Neurons in Inferotemporal Cortex of the Monkey , 2005 .

[76]  C. Koch,et al.  Invariant visual representation by single neurons in the human brain , 2005, Nature.

[77]  L. Saksida,et al.  Object memory and perception in the medial temporal lobe: an alternative approach , 2005, Current Opinion in Neurobiology.

[78]  Keiji Tanaka,et al.  Differences in onset latency of macaque inferotemporal neural responses to primate and non-primate faces. , 2005, Journal of neurophysiology.

[79]  Marc W Howard,et al.  The temporal context model in spatial navigation and relational learning: toward a common explanation of medial temporal lobe function across domains. , 2005, Psychological review.

[80]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[81]  Tomaso Poggio,et al.  Fast Readout of Object Identity from Macaque Inferior Temporal Cortex , 2005, Science.

[82]  A. Engel,et al.  Invasive recordings from the human brain: clinical insights and beyond , 2005, Nature Reviews Neuroscience.

[83]  S. Corkin,et al.  Medial temporal lobe structures are needed to re-experience remote autobiographical memories: evidence from H.M. and W.R. , 2005, Neuropsychologia.

[84]  Daniel L. Schacter,et al.  The case of K.C.: contributions of a memory-impaired person to memory theory , 2005, Neuropsychologia.

[85]  G. Winocur,et al.  Functional neuroanatomy of remote episodic, semantic and spatial memory: a unified account based on multiple trace theory , 2005, Journal of anatomy.

[86]  G. Buzsáki,et al.  Temporal Encoding of Place Sequences by Hippocampal Cell Assemblies , 2006, Neuron.

[87]  R. Segev,et al.  How silent is the brain: is there a “dark matter” problem in neuroscience? , 2006, Journal of Comparative Physiology A.

[88]  G. Winocur,et al.  The cognitive neuroscience of remote episodic, semantic and spatial memory , 2006, Current Opinion in Neurobiology.

[89]  Ueli Rutishauser,et al.  Single-Trial Learning of Novel Stimuli by Individual Neurons of the Human Hippocampus-Amygdala Complex , 2006, Neuron.

[90]  David J. Foster,et al.  Reverse replay of behavioural sequences in hippocampal place cells during the awake state , 2006, Nature.

[91]  Itzhak Fried,et al.  Differences in Mnemonic Processing by Neurons in the Human Hippocampus and Parahippocampal Regions , 2006, Journal of Cognitive Neuroscience.

[92]  David Gaffan,et al.  Perirhinal cortical contributions to object perception , 2006, Trends in Cognitive Sciences.

[93]  C. Koch,et al.  Sparse Representation in the Human Medial Temporal Lobe , 2006, The Journal of Neuroscience.

[94]  T. Poggio,et al.  Object Selectivity of Local Field Potentials and Spikes in the Macaque Inferior Temporal Cortex , 2006, Neuron.

[95]  D. Hassabis,et al.  Patients with hippocampal amnesia cannot imagine new experiences , 2007, Proceedings of the National Academy of Sciences.

[96]  G. Buzsáki,et al.  Forward and reverse hippocampal place-cell sequences during ripples , 2007, Nature Neuroscience.

[97]  C. Koch,et al.  Decoding visual inputs from multiple neurons in the human temporal lobe. , 2007, Journal of neurophysiology.

[98]  D. Hassabis,et al.  Deconstructing episodic memory with construction , 2007, Trends in Cognitive Sciences.

[99]  R. Clark,et al.  Recognition memory and the medial temporal lobe: a new perspective , 2007, Nature Reviews Neuroscience.

[100]  L. Saksida,et al.  Visual perception and memory: a new view of medial temporal lobe function in primates and rodents. , 2007, Annual review of neuroscience.

[101]  C. Koch,et al.  Sparse but not ‘Grandmother-cell’ coding in the medial temporal lobe , 2008, Trends in Cognitive Sciences.

[102]  R. Quiroga,et al.  Human single-neuron responses at the threshold of conscious recognition , 2008, Proceedings of the National Academy of Sciences.

[103]  C. Koch,et al.  Latency and Selectivity of Single Neurons Indicate Hierarchical Processing in the Human Medial Temporal Lobe , 2008, The Journal of Neuroscience.

[104]  C. Gross Single neuron studies of inferior temporal cortex , 2008, Neuropsychologia.

[105]  I. Fried,et al.  Internally Generated Reactivation of Single Neurons in Human Hippocampus During Free Recall , 2008, Science.

[106]  Doris Y. Tsao,et al.  Mechanisms of face perception. , 2008, Annual review of neuroscience.

[107]  N. Burgess,et al.  The hippocampus and memory: insights from spatial processing , 2008, Nature Reviews Neuroscience.

[108]  Roelfsema Pieter Cortical algorithms for perceptual grouping , 2008 .

[109]  Asohan Amarasingham,et al.  Internally Generated Cell Assembly Sequences in the Rat Hippocampus , 2008, Science.

[110]  R. Quiroga,et al.  Extracting information from neuronal populations: information theory and decoding approaches , 2009, Nature Reviews Neuroscience.

[111]  L. Squire The Legacy of Patient H.M. for Neuroscience , 2009, Neuron.

[112]  C. Koch,et al.  Explicit Encoding of Multimodal Percepts by Single Neurons in the Human Brain , 2009, Current Biology.

[113]  Rodrigo Quian Quiroga,et al.  Human medial temporal lobe neurons respond preferentially to personally relevant images , 2009, Proceedings of the National Academy of Sciences.

[114]  G. Winocur,et al.  Amnesia as an impairment of detail generation and binding: Evidence from personal, fictional, and semantic narratives in K.C. , 2009, Neuropsychologia.

[115]  Emery Brown,et al.  Trial Outcome and Associative Learning Signals in the Monkey Hippocampus , 2009, Neuron.

[116]  Stephen Wright,et al.  An alternative approach. , 2010, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[117]  C. Koch,et al.  Responses of human medial temporal lobe neurons are modulated by stimulus repetition. , 2010, Journal of neurophysiology.

[118]  Doris Y. Tsao,et al.  Functional Compartmentalization and Viewpoint Generalization Within the Macaque Face-Processing System , 2010, Science.

[119]  Christof Koch,et al.  On-line, voluntary control of human temporal lobe neurons , 2010, Nature.

[120]  G. Kreiman,et al.  Measuring sparseness in the brain: comment on Bowers (2009). , 2010, Psychological review.

[121]  Gabriel Kreiman,et al.  Postscript: About Grandmother Cells and Jennifer Aniston Neurons. , 2010 .

[122]  Rafael Malach,et al.  A neural substrate in the human hippocampus for linking successive events , 2010, Proceedings of the National Academy of Sciences.

[123]  J. Einasto Dark Matter , 2009, 0901.0632.

[124]  Rasmus R. Schröder,et al.  Reversal of Interlaminar Signal Between Sensory and Memory Processing in Monkey Temporal Cortex , 2011 .

[125]  Christof Koch,et al.  Selectivity of pyramidal cells and interneurons in the human medial temporal lobe. , 2011, Journal of neurophysiology.

[126]  R. Quiroga Spike sorting , 2012, Current Biology.

[127]  Rodrigo Quian Quiroga,et al.  Borges and Memory: Encounters with the Human Brain , 2012 .

[128]  M. H.,et al.  What ’ s new with the amnesic patient , 2022 .