Planning in information space for a quadrotor helicopter in a GPS-denied environment

This paper describes a motion planning algorithm for a quadrotor helicopter flying autonomously without GPS. Without accurate global positioning, the vehicle's ability to localize itself varies across the environment, since different environmental features provide different degrees of localization. If the vehicle plans a path without regard to how well it can localize itself along that path, it runs the risk of becoming lost. We use the Belief Roadmap (BRM) algorithm [1], an information-space extension of the Probabilistic Roadmap algorithm, to plan vehicle trajectories that incorporate sensing. We show that the original BRM can be extended to use the Unscented Kalman Filter (UKF), and describe a sampling algorithm that minimizes the number of samples required to find a good path. Finally, we demonstrate the BRM path- planning algorithm on the helicopter, navigating in an indoor environment with a laser range-finder.

[1]  H. W. Kuhn,et al.  11. Extensive Games and the Problem of Information , 1953 .

[2]  James E. Potter,et al.  Optimum mixing of gyroscope and star tracker data. , 1968 .

[3]  D. Vaughan A nonrecursive algebraic solution for the discrete Riccati equation , 1970 .

[4]  Edward J. Sondik,et al.  The optimal control of par-tially observable Markov processes , 1971 .

[5]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[6]  Hugh F. Durrant-Whyte,et al.  Mobile robot localization by tracking geometric beacons , 1991, IEEE Trans. Robotics Autom..

[7]  Jean-Claude Latombe,et al.  Sensory uncertainty field for mobile robot navigation , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[8]  Jean-Claude Latombe,et al.  Planning the Motions of a Mobile Robot in a Sensory Uncertainty Field , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  H.F. Durrant-Whyte,et al.  A new approach for filtering nonlinear systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[10]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[11]  Wolfram Burgard,et al.  Active Markov localization for mobile robots , 1998, Robotics Auton. Syst..

[12]  Yong Yu,et al.  On sensor-based roadmap: a framework for motion planning for a manipulator arm in unknown environments , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[13]  Mark H. Overmars,et al.  The Gaussian sampling strategy for probabilistic roadmap planners , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[14]  Sebastian Thrun,et al.  Coastal Navigation with Mobile Robots , 1999, NIPS.

[15]  Nancy M. Amato,et al.  MAPRM: a probabilistic roadmap planner with sampling on the medial axis of the free space , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[16]  Lucia K. Dale,et al.  Optimization techniques for probabilistic roadmaps , 2000 .

[17]  Stefano Caselli,et al.  ERPP: An experience-based randomized path planner , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[18]  Nancy M. Amato,et al.  Choosing good distance metrics and local planners for probabilistic roadmap methods , 2000, IEEE Trans. Robotics Autom..

[19]  Scott Alan Hutchinson,et al.  Toward real-time path planning in changing environments , 2000 .

[20]  Lydia E. Kavraki,et al.  Path planning using lazy PRM , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[21]  Blai Bonet,et al.  Planning with Incomplete Information as Heuristic Search in Belief Space , 2000, AIPS.

[22]  Nancy M. Amato,et al.  Using motion planning to study protein folding pathways , 2001, J. Comput. Biol..

[23]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[24]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[25]  Pekka Isto,et al.  Constructing probabilistic roadmaps with powerful local planning and path optimization , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[26]  Seth Hutchinson,et al.  Using manipulability to bias sampling during the construction of probabilistic roadmaps , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[27]  David Hsu,et al.  The bridge test for sampling narrow passages with probabilistic roadmap planners , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[28]  Gregory Dudek,et al.  Comparing image-based localization methods , 2003, IJCAI.

[29]  Sebastian Thrun,et al.  Scan Alignment and 3-D Surface Modeling with a Helicopter Platform , 2003, FSR.

[30]  Joelle Pineau,et al.  Point-based value iteration: An anytime algorithm for POMDPs , 2003, IJCAI.

[31]  Thierry Siméon,et al.  Eurographics/siggraph Symposium on Computer Animation (2003) Visual Simulation of Ice Crystal Growth , 2022 .

[32]  Hugh F. Durrant-Whyte,et al.  Simultaneous Localization and Mapping with Sparse Extended Information Filters , 2004, Int. J. Robotics Res..

[33]  Reid G. Simmons,et al.  Heuristic Search Value Iteration for POMDPs , 2004, UAI.

[34]  Oliver Brock,et al.  Toward Optimal Configuration Space Sampling , 2005, Robotics: Science and Systems.

[35]  Oliver Brock,et al.  Sampling-Based Motion Planning Using Predictive Models , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[36]  Wolfram Burgard,et al.  Probabilistic Robotics (Intelligent Robotics and Autonomous Agents) , 2005 .

[37]  Mark H. Overmars,et al.  Roadmap-based motion planning in dynamic environments , 2004, IEEE Transactions on Robotics.

[38]  Gaurav S. Sukhatme,et al.  Visual servoing of an autonomous helicopter in urban areas using feature tracking , 2006, J. Field Robotics.

[39]  Stergios I. Roumeliotis,et al.  Optimal sensor scheduling for resource-constrained localization of mobile robot formations , 2006, IEEE Transactions on Robotics.

[40]  Jonathan P. How,et al.  Indoor Multi-Vehicle Flight Testbed for Fault Detection, Isolation, and Recovery , 2006 .

[41]  Gerd Hirzinger,et al.  Energy-efficient Autonomous Four-rotor Flying Robot Controlled at 1 kHz , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[42]  Nicholas Roy,et al.  The Belief Roadmap: Efficient Planning in Linear POMDPs by Factoring the Covariance , 2007, ISRR.

[43]  Dieter Fox,et al.  GP-UKF: Unscented kalman filters with Gaussian process prediction and observation models , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.