Efficient computation of optimal navigation functions for nonholonomic planning

We present a fast, numerical approach to computing optimal feedback motion strategies for a nonholonomic robot in a cluttered environment. Although many techniques exist to compute navigation functions that can incorporate feedback, none of these methods is directly able to determine optimal strategies for general nonholonomic systems. Our approach builds on previous techniques in numerical optimal control, and on our previous efforts in developing algorithms that compute feedback strategies for problems that involve nondeterministic and stochastic uncertainties in prediction. The proposed approach efficiently computes an optimal navigation function for nonholonomic systems by exploiting two ideas: 1) the principle of Dijkstra's algorithm can be generalized to continuous configuration spaces and nonholonomic systems; and 2) a simplicial mesh representation can be used to reduce the complexity of numerical interpolation.

[1]  R. Larson,et al.  A survey of dynamic programming computational procedures , 1967, IEEE Transactions on Automatic Control.

[2]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1986 .

[3]  L. Shepp,et al.  OPTIMAL PATHS FOR A CAR THAT GOES BOTH FORWARDS AND BACKWARDS , 1990 .

[4]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[5]  Jean-Claude Latombe,et al.  Nonholonomic multibody mobile robots: Controllability and motion planning in the presence of obstacles , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[6]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[7]  Subhash Suri,et al.  Efficient computation of Euclidean shortest paths in the plane , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[8]  Richard M. Murray,et al.  A motion planner for nonholonomic mobile robots , 1994, IEEE Trans. Robotics Autom..

[9]  Mark H. Overmars,et al.  Coordinated motion planning for multiple car-like robots using probabilistic roadmaps , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[10]  Lydia E. Kavraki Computation of configuration-space obstacles using the fast Fourier transform , 1995, IEEE Trans. Robotics Autom..

[11]  S. Shankar Sastry,et al.  Steering Three-Input Nonholonomic Systems: The Fire Truck Example , 1995, Int. J. Robotics Res..

[12]  Kevin M. Lynch,et al.  Stable Pushing: Mechanics, Controllability, and Planning , 1995, Int. J. Robotics Res..

[13]  Rajeev Motwani,et al.  Nonholonomic path planning for pushing a disk among obstacles , 1997, Proceedings of International Conference on Robotics and Automation.

[14]  Zvi Shiller,et al.  Optimal obstacle avoidance based on the Hamilton-Jacobi-Bellman equation , 1994, IEEE Trans. Robotics Autom..

[15]  Rajeev Sharma,et al.  On Motion Planning in Changing, Partially Predictable Environments , 1997, Int. J. Robotics Res..

[16]  Alfred M. Bruckstein,et al.  Multivalued distance maps for motion planning on surfaces with moving obstacles , 1998, IEEE Trans. Robotics Autom..

[17]  Giuseppe Oriolo,et al.  Feedback control of a nonholonomic car-like robot , 1998 .

[18]  Jean-Paul Laumond,et al.  Guidelines in nonholonomic motion planning for mobile robots , 1998 .

[19]  Steven M. LaValle,et al.  An Objective-Based Framework for Motion Planning under Sensing and Control Uncertainties , 1998, Int. J. Robotics Res..

[20]  S. L. Valle Numerical computation of optimal navigation functions on a simplicial complex , 1998 .