Symmetric games with piecewise linear utilities

We analyze the complexity of computing pure strategy Nash equilibria (PSNE) inn symmetric games with a fixed number of actions, where the utilities are compactly represented. Such a representation is able to describe symmetric games whose number of players is exponential in the representation size. We show that in the general case, where utility functions are represented as arbitrary circuits, the problem of deciding the existence of PSNE is NP-complete. For the special case of games with two actions, there always exist a PSNE and we give a polynomial algorithm for finding one. We then focus on a natural representation of utility as piecewise-linear functions, and show that such a representation has nice computational properties. In particular, we give polynomial-time algorithms to count the number of PSNE (thus deciding if such an equilibrium exists) and to find a sample PSNE, when one exists.

[1]  R. Rosenthal A class of games possessing pure-strategy Nash equilibria , 1973 .

[2]  A. Barvinok A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed , 1994 .

[3]  Eric van Damme,et al.  Non-Cooperative Games , 2000 .

[4]  Michael L. Littman,et al.  Graphical Models for Game Theory , 2001, UAI.

[5]  A. Barvinok,et al.  Short rational generating functions for lattice point problems , 2002, math/0211146.

[6]  Georg Gottlob,et al.  Pure Nash equilibria: hard and easy games , 2003, TARK '03.

[7]  John Langford,et al.  Correlated equilibria in graphical games , 2003, EC '03.

[8]  Jesús A. De Loera,et al.  Effective lattice point counting in rational convex polytopes , 2004, J. Symb. Comput..

[9]  Christos H. Papadimitriou,et al.  The complexity of pure Nash equilibria , 2004, STOC '04.

[10]  Vincent Loechner,et al.  Analytical computation of Ehrhart polynomials: enabling more compiler analyses and optimizations , 2004, CASES '04.

[11]  Kevin Leyton-Brown,et al.  Computing Nash Equilibria of Action-Graph Games , 2004, UAI.

[12]  Daniel M. Reeves,et al.  Notes on Equilibria in Symmetric Games , 2004 .

[13]  J. D. Loera The many aspects of counting lattice points in polytopes , 2005 .

[14]  Maria J. Serna,et al.  Pure Nash Equilibria in Games with a Large Number of Actions , 2005, MFCS.

[15]  Christos H. Papadimitriou,et al.  Computing correlated equilibria in multi-player games , 2005, STOC '05.

[16]  Christos H. Papadimitriou,et al.  Three-Player Games Are Hard , 2005, Electron. Colloquium Comput. Complex..

[17]  Christos H. Papadimitriou,et al.  The Game World Is Flat: The Complexity of Nash Equilibria in Succinct Games , 2006, ICALP.

[18]  Xiaotie Deng,et al.  Settling the Complexity of Two-Player Nash Equilibrium , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[19]  Paul W. Goldberg,et al.  The complexity of computing a Nash equilibrium , 2006, STOC '06.

[20]  Felix A. Fischer,et al.  Symmetries and the complexity of pure Nash equilibrium , 2007, J. Comput. Syst. Sci..

[21]  Christos H. Papadimitriou,et al.  Computing pure nash equilibria in graphical games via markov random fields , 2006, EC '06.

[22]  Jesús A. De Loera,et al.  Integer Polynomial Optimization in Fixed Dimension , 2006, Math. Oper. Res..

[23]  Alexander I. Barvinok Computing the Ehrhart quasi-polynomial of a rational simplex , 2006, Math. Comput..

[24]  Christos H. Papadimitriou,et al.  Computing Equilibria in Anonymous Games , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[25]  Kevin Leyton-Brown,et al.  Computing Pure Nash Equilibria in Symmetric Action Graph Games , 2007, AAAI.

[26]  Yoav Shoham,et al.  Multiagent Systems - Algorithmic, Game-Theoretic, and Logical Foundations , 2009 .

[27]  Matthias Köppe,et al.  An Implementation of the Barvinok--Woods Integer Projection Algorithm , 2008, ITSL.

[28]  Dominique Lepelley,et al.  On Ehrhart polynomials and probability calculations in voting theory , 2008, Soc. Choice Welf..

[29]  Constantinos Daskalakis,et al.  On the complexity of Nash equilibria of action-graph games , 2008, SODA.

[30]  Jesús A. De Loera,et al.  Pareto Optima of Multicriteria Integer Linear Programs , 2009, INFORMS J. Comput..

[31]  Tim Roughgarden,et al.  Algorithmic Game Theory , 2007 .

[32]  Maurice Queyranne,et al.  Rational Generating Functions and Integer Programming Games , 2008, Oper. Res..

[33]  Grant Schoenebeck,et al.  The Computational Complexity of Nash Equilibria in Concisely Represented Games , 2012, TOCT.