Probabilistic navigation in dynamic environment using Rapidly-exploring Random Trees and Gaussian processes

The paper describes a navigation algorithm for dynamic, uncertain environment. Moving obstacles are supposed to move on typical patterns which are pre-learned and are represented by Gaussian processes. The planning algorithm is based on an extension of the rapidly-exploring random tree algorithm, where the likelihood of the obstacles trajectory and the probability of collision is explicitly taken into account. The algorithm is used in a partial motion planner, and the probability of collision is updated in real-time according to the most recent estimation. Results show the performance of the navigation algorithm for a car-like robot moving among dynamic obstacles with probabilistic trajectory prediction.

[1]  Christian Laugier,et al.  Intentional motion on-line learning and prediction , 2008, Machine Vision and Applications.

[2]  R. Kosut,et al.  Optimal sensor system design for state reconstruction , 1982 .

[3]  Rodrigo Benenson,et al.  Integrating Perception and Planning for Autonomous Navigation of Urban Vehicles , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[5]  Rajeev Sharma,et al.  On Motion Planning in Changing, Partially Predictable Environments , 1997, Int. J. Robotics Res..

[6]  Philippe Bonnifait,et al.  Design and experimental validation of an odometric and goniometric localization system for outdoor robot vehicles , 1998, IEEE Trans. Robotics Autom..

[7]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[8]  Jaime G. Carbonell,et al.  Derivational analogy: a theory of reconstructive problem solving and expertise acquisition , 1993 .

[9]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[10]  Antonio Bicchi,et al.  Optimal exploratory paths for a mobile rover , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[11]  Monica N. Nicolescu,et al.  Natural methods for robot task learning: instructive demonstrations, generalization and practice , 2003, AAMAS '03.

[12]  Thierry Fraichard,et al.  Safe motion planning in dynamic environments , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[14]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[15]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[16]  Panos E. Trahanias,et al.  Real-time hierarchical POMDPs for autonomous robot navigation , 2007, Robotics Auton. Syst..

[17]  Ole Ravn,et al.  Design of Kalman filters for mobile robots; evaluation of the kinematic and odometric approach , 1999, Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328).

[18]  Reid G. Simmons,et al.  Particle RRT for Path Planning with Uncertainty , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[19]  Roland Siegwart,et al.  Simultaneous localization and odometry self calibration for mobile robot , 2007, Auton. Robots.

[20]  Roland Siegwart,et al.  Theoretical Results on On-line Sensor Self-Calibration , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  C. Cariou,et al.  Mobile robot control in presence of sliding: Application to agricultural vehicle path tracking , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[22]  Hajime Asama,et al.  Inevitable collision states — a step towards safer robots? , 2004, Adv. Robotics.

[23]  Eric Foxlin,et al.  Generalized architecture for simultaneous localization, auto-calibration, and map-building , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[24]  Monica N. Nicolescu,et al.  A hierarchical architecture for behavior-based robots , 2002, AAMAS '02.

[25]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[26]  Didier Wolf,et al.  An automatic calibration method for a multisensor system: application to a mobile robot localization system , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[27]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[28]  Maja J. Mataric,et al.  Demonstration-Based Behavior and Task Learning , 2006, AAAI Spring Symposium: To Boldly Go Where No Human-Robot Team Has Gone Before.

[29]  Stergios I. Roumeliotis,et al.  Distributed multirobot localization , 2002, IEEE Trans. Robotics Autom..

[30]  Liqiang Feng,et al.  Measurement and correction of systematic odometry errors in mobile robots , 1996, IEEE Trans. Robotics Autom..

[31]  J.-P. Burlet Suivi multi-objets adaptatif : application à la classification de comportements de mobiles , 2007 .

[32]  Wolfram Burgard,et al.  Learning Motion Patterns of People for Compliant Robot Motion , 2005, Int. J. Robotics Res..

[33]  Jun Morimoto,et al.  Learning from demonstration and adaptation of biped locomotion , 2004, Robotics Auton. Syst..

[34]  Dizan Vasquez,et al.  Incremental Learning for Motion Prediction of Pedestrians and Vehicles , 2007, Springer Tracts in Advanced Robotics.

[35]  Trung-Dung Vu,et al.  Online Localization and Mapping with Moving Object Tracking in Dynamic Outdoor Environments , 2007, 2007 IEEE Intelligent Vehicles Symposium.

[36]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[37]  Reid G. Simmons,et al.  The curvature-velocity method for local obstacle avoidance , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[38]  Reid G. Simmons,et al.  Probabilistic Robot Navigation in Partially Observable Environments , 1995, IJCAI.

[39]  Oussama Khatib,et al.  Elastic bands: connecting path planning and control , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[40]  M. Matarić,et al.  Behavior-Based Segmentation of Demonstrated Tasks , 2006 .

[41]  Tieniu Tan,et al.  A system for learning statistical motion patterns , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Sebastian Thrun,et al.  Online self-calibration for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[43]  Roland Siegwart,et al.  Observability analysis for mobile robot localization , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[44]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[45]  Christian Laugier,et al.  Modelling Smooth Paths Using Gaussian Processes , 2007, FSR.

[46]  Antonio Bicchi,et al.  On the observability of mobile vehicles localization , 1998 .

[47]  Wolfram Burgard,et al.  An integrated approach to goal-directed obstacle avoidance under dynamic constraints for dynamic environments , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[48]  Christian Laugier,et al.  The CyCab: a car-like robot navigating autonomously and safely among pedestrians , 2005, Robotics Auton. Syst..

[49]  Nicholas Roy,et al.  Adapting probabilistic roadmaps to handle uncertain maps , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[50]  Christian Laugier,et al.  Adaptive Interacting Multiple Models applied on pedestrian tracking in car parks , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[51]  Frédéric Large Navigation Autonome d'un Robot Mobile en Environnement Dynamique et Incertain , 2003 .

[52]  S. Münch,et al.  Robot Programming by Demonstration (RPD) - Using Machine Learning and User Interaction Methods for the Development of Easy and Comfortable Robot Programming Systems , 2000 .