Informed Sampling for Asymptotically Optimal Path Planning

Anytime almost-surely asymptotically optimal planners, such as RRT*, incrementally find paths to every state in the search domain. This is inefficient once an initial solution is found, as then only states that can provide a <italic> better</italic> solution need to be considered. Exact knowledge of these states requires solving the problem but can be approximated with heuristics. This paper formally defines these sets of states and demonstrates how they can be used to analyze arbitrary planning problems. It uses the well-known <inline-formula><tex-math notation="LaTeX">$L^2$ </tex-math></inline-formula> norm (i.e., Euclidean distance) to analyze minimum-path-length problems and shows that existing approaches decrease in effectiveness <italic>factorially</italic> (i.e., faster than exponentially) with state dimension. It presents a method to address this curse of dimensionality by <italic>directly</italic> sampling the prolate hyperspheroids (i.e., symmetric <inline-formula><tex-math notation="LaTeX">$n$</tex-math></inline-formula> -dimensional ellipses) that define the <inline-formula><tex-math notation="LaTeX">$L^2$</tex-math></inline-formula> <italic>informed</italic> set. The importance of this direct informed sampling technique is demonstrated with Informed RRT*. This extension of RRT* has less theoretical dependence on state dimension and problem size than existing techniques and allows for <italic>linear</italic> convergence on some problems. It is shown experimentally to find better solutions faster than existing techniques on both abstract planning problems and HERB, a two-arm manipulation robot.

[1]  Siddhartha S. Srinivasa,et al.  Batch Informed Trees (BIT*): Sampling-based optimal planning via the heuristically guided search of implicit random geometric graphs , 2014, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[2]  Emilio Frazzoli,et al.  Anytime Motion Planning using the RRT* , 2011, 2011 IEEE International Conference on Robotics and Automation.

[3]  Yasar Ayaz,et al.  RRT*-SMART: A Rapid Convergence Implementation of RRT* , 2013 .

[4]  Panagiotis Tsiotras,et al.  Use of relaxation methods in sampling-based algorithms for optimal motion planning , 2013, 2013 IEEE International Conference on Robotics and Automation.

[5]  Junghwan Lee,et al.  Cloud RRT∗: Sampling Cloud based RRT∗ , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[6]  Panagiotis Tsiotras,et al.  Dynamic programming guided exploration for sampling-based motion planning algorithms , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[7]  Siddhartha S. Srinivasa,et al.  Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Jonathan D. Gammell,et al.  Informed Anytime Search for Continuous Planning Problems , 2017 .

[9]  Emilio Frazzoli,et al.  Asymptotically-optimal path planning for manipulation using incremental sampling-based algorithms , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  Emilio Frazzoli,et al.  RRTX: Asymptotically optimal single-query sampling-based motion planning with quick replanning , 2016, Int. J. Robotics Res..

[11]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[12]  G. Wahba A Least Squares Estimate of Satellite Attitude , 1965 .

[13]  Marco Pavone,et al.  Fast marching tree: A fast marching sampling-based method for optimal motion planning in many dimensions , 2013, ISRR.

[14]  Wheeler Ruml,et al.  Abstraction-Guided Sampling for Motion Planning , 2012, SOCS.

[15]  Jean-Claude Latombe,et al.  Randomized Kinodynamic Motion Planning with Moving Obstacles , 2002, Int. J. Robotics Res..

[16]  Ross A. Knepper,et al.  Herb 2.0: Lessons Learned From Developing a Mobile Manipulator for the Home , 2012, Proceedings of the IEEE.

[17]  Dan Halperin,et al.  Asymptotically near-optimal RRT for fast, high-quality, motion planning , 2013, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[18]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[19]  George V. Moustakides,et al.  Geometric probability results for bounding path quality in sampling-based roadmaps after finite computation , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[20]  S. Srinivasa,et al.  On Recursive Random Prolate Hyperspheroids , 2014, 1403.7664.

[21]  Ron Alterovitz,et al.  Rapidly-exploring roadmaps: Weighing exploration vs. refinement in optimal motion planning , 2011, 2011 IEEE International Conference on Robotics and Automation.

[22]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[23]  Yue Zhang,et al.  An approach to speed up RRT , 2014, 2014 IEEE Intelligent Vehicles Symposium Proceedings.

[24]  Anthony Stentz,et al.  Anytime RRTs , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  S. Srinivasa,et al.  Informed Sampling for Asymptotically Optimal Path Planning , 2017, IEEE Transactions on Robotics.

[26]  Siddhartha S. Srinivasa,et al.  Informed Asymptotically Optimal Anytime Search , 2017, ArXiv.

[27]  Reid G. Simmons,et al.  Approaches for heuristically biasing RRT growth , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[28]  Baris Akgün,et al.  Sampling heuristics for optimal motion planning in high dimensions , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[29]  J. Forbes,et al.  On the Solution of Wahba's Problem on SO(n) , 2014 .

[30]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[31]  Nikolaus Correll,et al.  C-FOREST: Parallel Shortest Path Planning With Superlinear Speedup , 2013, IEEE Transactions on Robotics.

[32]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[33]  M. Farooq,et al.  Note on the generation of random points uniformly distributed in hyper-ellipsoids , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[34]  Didier Devaurs,et al.  Efficient Sampling-Based Approaches to Optimal Path Planning in Complex Cost Spaces , 2014, WAFR.

[35]  Lydia E. Kavraki,et al.  The Open Motion Planning Library , 2012, IEEE Robotics & Automation Magazine.

[36]  Howie Choset,et al.  Sensor Based Planing, Part I: The Generalized Voronoi Graph , 1995, ICRA.

[37]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[38]  T. Barfoot,et al.  The Probability Density Function of a Transformation-based Hyperellipsoid Sampling Technique , 2014, 1404.1347.