Inspect, Understand, Overcome: A Survey of Practical Methods for AI Safety

[1]  Joachim Denzler,et al.  Active Learning for Deep Object Detection , 2018, VISIGRAPP.

[2]  Hiroshi Inoue,et al.  Data Augmentation by Pairing Samples for Images Classification , 2018, ArXiv.

[3]  Yee Whye Teh,et al.  Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.

[4]  Yi Yang,et al.  Taking a Closer Look at Domain Shift: Category-Level Adversaries for Semantics Consistent Domain Adaptation , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Bidyut Baran Chaudhuri,et al.  LiSHT: Non-Parametric Linearly Scaled Hyperbolic Tangent Activation Function for Neural Networks , 2019, CVIP.

[6]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[7]  Vitaly Shmatikov,et al.  Membership Inference Attacks Against Machine Learning Models , 2016, 2017 IEEE Symposium on Security and Privacy (SP).

[8]  Anelia Angelova,et al.  Depth Prediction Without the Sensors: Leveraging Structure for Unsupervised Learning from Monocular Videos , 2018, AAAI.

[9]  Ameet Talwalkar,et al.  Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization , 2016, J. Mach. Learn. Res..

[10]  Geoffrey E. Hinton,et al.  Distilling the Knowledge in a Neural Network , 2015, ArXiv.

[11]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[12]  Xiangyang Xue,et al.  SCSP: Spectral Clustering Filter Pruning with Soft Self-adaption Manners , 2018, ArXiv.

[13]  Ben Poole,et al.  On Implicit Regularization in β-VAEs , 2020, ICML.

[14]  Matthias Rottmann,et al.  Uncertainty Measures and Prediction Quality Rating for the Semantic Segmentation of Nested Multi Resolution Street Scene Images , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[15]  Germán Ros,et al.  CARLA: An Open Urban Driving Simulator , 2017, CoRL.

[16]  Ke Yan,et al.  Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks , 2019, Scientific Reports.

[17]  Been Kim,et al.  Sanity Checks for Saliency Maps , 2018, NeurIPS.

[18]  Alexander Binder,et al.  On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation , 2015, PloS one.

[19]  Brian E. Ruttenberg,et al.  Causal Learning and Explanation of Deep Neural Networks via Autoencoded Activations , 2018, ArXiv.

[20]  D. Tao,et al.  Deep Domain Generalization via Conditional Invariant Adversarial Networks , 2018, ECCV.

[21]  Jim Tørresen,et al.  A task-and-technique centered survey on visual analytics for deep learning model engineering , 2018, Comput. Graph..

[22]  Johannes Gehrke,et al.  Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission , 2015, KDD.

[23]  Roberto Cipolla,et al.  Multi-task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[24]  Daniel Soudry,et al.  Post training 4-bit quantization of convolutional networks for rapid-deployment , 2018, NeurIPS.

[25]  A. Raftery,et al.  Probabilistic forecasts, calibration and sharpness , 2007 .

[26]  William Yang Wang,et al.  Disentangled Representation Learning with Wasserstein Total Correlation , 2019, ArXiv.

[27]  Guillaume Desjardins,et al.  Understanding disentangling in β-VAE , 2018, ArXiv.

[28]  Baowen Xu,et al.  Testing and validating machine learning classifiers by metamorphic testing , 2011, J. Syst. Softw..

[29]  Valerio Pascucci,et al.  Visualizing High-Dimensional Data: Advances in the Past Decade , 2017, IEEE Transactions on Visualization and Computer Graphics.

[30]  Matthew Mattina,et al.  Learning low-precision neural networks without Straight-Through Estimator(STE) , 2019, IJCAI.

[31]  Ding Yuan,et al.  Leveraging semantic segmentation with learning-based confidence measure , 2019, Neurocomputing.

[32]  Martin Schels,et al.  A Survey on Methods for the Safety Assurance of Machine Learning Based Systems , 2020 .

[33]  Mark Lee,et al.  On Physical Adversarial Patches for Object Detection , 2019, ArXiv.

[34]  Luc Van Gool,et al.  Domain Adaptive Faster R-CNN for Object Detection in the Wild , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[35]  Burr Settles,et al.  Active Learning Literature Survey , 2009 .

[36]  Michael I. Jordan,et al.  Conditional Adversarial Domain Adaptation , 2017, NeurIPS.

[37]  Yiming Yang,et al.  DARTS: Differentiable Architecture Search , 2018, ICLR.

[38]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[39]  Aleksander Madry,et al.  Towards Deep Learning Models Resistant to Adversarial Attacks , 2017, ICLR.

[40]  Hanno Gottschalk,et al.  Deep Bayesian Active Semi-Supervised Learning , 2018, ICMLA.

[41]  Martial Hebert,et al.  Cross-Stitch Networks for Multi-task Learning , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[42]  Wei Li,et al.  DeepBillboard: Systematic Physical-World Testing of Autonomous Driving Systems , 2018, 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE).

[43]  David Barber,et al.  Bayesian Classification With Gaussian Processes , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Esa Rahtu,et al.  CIIDefence: Defeating Adversarial Attacks by Fusing Class-Specific Image Inpainting and Image Denoising , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[45]  Shuchang Zhou,et al.  DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients , 2016, ArXiv.

[46]  Yang Song,et al.  Improving the Robustness of Deep Neural Networks via Stability Training , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Martin Wattenberg,et al.  SmoothGrad: removing noise by adding noise , 2017, ArXiv.

[48]  Hanno Gottschalk,et al.  Classification Uncertainty of Deep Neural Networks Based on Gradient Information , 2018, ANNPR.

[49]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[50]  Hanno Gottschalk,et al.  Prediction Error Meta Classification in Semantic Segmentation: Detection via Aggregated Dispersion Measures of Softmax Probabilities , 2018, 2020 International Joint Conference on Neural Networks (IJCNN).

[51]  M. J. Fryer A Review of Some Non-parametric Methods of Density Estimation , 1977 .

[52]  Rick Salay,et al.  Efficacy of Pixel-Level OOD Detection for Semantic Segmentation , 2019, ArXiv.

[53]  Bianca Zadrozny,et al.  Transforming classifier scores into accurate multiclass probability estimates , 2002, KDD.

[54]  Milos Hauskrecht,et al.  Obtaining Well Calibrated Probabilities Using Bayesian Binning , 2015, AAAI.

[55]  Koby Crammer,et al.  Learning Bounds for Domain Adaptation , 2007, NIPS.

[56]  Zhiru Zhang,et al.  Improving Neural Network Quantization without Retraining using Outlier Channel Splitting , 2019, ICML.

[57]  Neil D. Lawrence,et al.  Deep Gaussian Processes , 2012, AISTATS.

[58]  Ian Goodfellow,et al.  TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing , 2018, ICML.

[59]  Logan Engstrom,et al.  Synthesizing Robust Adversarial Examples , 2017, ICML.

[60]  Patrick Judd,et al.  Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation , 2020, ArXiv.

[61]  Jussi Hanhirova,et al.  A machine learning environment for evaluating autonomous driving software , 2020, ArXiv.

[62]  Michael W. Berry,et al.  Algorithms and applications for approximate nonnegative matrix factorization , 2007, Comput. Stat. Data Anal..

[63]  Timo Aila,et al.  Pruning Convolutional Neural Networks for Resource Efficient Inference , 2016, ICLR.

[64]  Vladlen Koltun,et al.  Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials , 2011, NIPS.

[65]  Lars Kotthoff,et al.  Automated Machine Learning: Methods, Systems, Challenges , 2019, The Springer Series on Challenges in Machine Learning.

[66]  Ross B. Girshick,et al.  Focal Loss for Dense Object Detection , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[67]  Wojciech Czarnecki,et al.  On Loss Functions for Deep Neural Networks in Classification , 2017, ArXiv.

[68]  Hanno Gottschalk,et al.  Time-Dynamic Estimates of the Reliability of Deep Semantic Segmentation Networks , 2019, 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI).

[69]  Li Fei-Fei,et al.  Progressive Neural Architecture Search , 2017, ECCV.

[70]  Raquel Urtasun,et al.  Fully Connected Deep Structured Networks , 2015, ArXiv.

[71]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[72]  Daniel A. Keim,et al.  What you see is what you can change: Human-centered machine learning by interactive visualization , 2017, Neurocomputing.

[73]  Ramprasaath R. Selvaraju,et al.  Grad-CAM: Why did you say that? Visual Explanations from Deep Networks via Gradient-based Localization , 2016 .

[74]  Tim Fingscheidt,et al.  Self-Supervised Monocular Depth Estimation: Solving the Dynamic Object Problem by Semantic Guidance , 2020, ECCV.

[75]  Alex Endert,et al.  The State of the Art in Integrating Machine Learning into Visual Analytics , 2017, Comput. Graph. Forum.

[76]  Alexander H. Liu,et al.  Towards Scene Understanding: Unsupervised Monocular Depth Estimation With Semantic-Aware Representation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[77]  Manu Mathew,et al.  Sparse, Quantized, Full Frame CNN for Low Power Embedded Devices , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[78]  Ian Osband,et al.  Risk versus Uncertainty in Deep Learning: Bayes, Bootstrap and the Dangers of Dropout , 2016 .

[79]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[80]  Wei Chen,et al.  A Survey of Visual Analytic Pipelines , 2016, Journal of Computer Science and Technology.

[81]  Yan Feng,et al.  Hilbert-Based Generative Defense for Adversarial Examples , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[82]  Johann Marius Zöllner,et al.  Automated Focal Loss for Image based Object Detection , 2019, 2020 IEEE Intelligent Vehicles Symposium (IV).

[83]  Chung-Hao Huang,et al.  Towards Dependability Metrics for Neural Networks , 2018, 2018 16th ACM/IEEE International Conference on Formal Methods and Models for System Design (MEMOCODE).

[84]  R. Venkatesh Babu,et al.  Fast Feature Fool: A data independent approach to universal adversarial perturbations , 2017, BMVC.

[85]  Kibok Lee,et al.  Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples , 2017, ICLR.

[86]  Naftali Tishby,et al.  Opening the Black Box of Deep Neural Networks via Information , 2017, ArXiv.

[87]  Wei Guo,et al.  An Adaptive Supervision Framework for Active Learning in Object Detection , 2019, BMVC.

[88]  Jun Zhu,et al.  Boosting Adversarial Attacks with Momentum , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[89]  Kamyar Azizzadenesheli,et al.  Stochastic Activation Pruning for Robust Adversarial Defense , 2018, ICLR.

[90]  Sebastian Ramos,et al.  The Cityscapes Dataset for Semantic Urban Scene Understanding , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[91]  Sujoy Roy,et al.  Effects of Loss Functions And Target Representations on Adversarial Robustness , 2018, ArXiv.

[92]  Eneldo Loza Mencía,et al.  DeepRED - Rule Extraction from Deep Neural Networks , 2016, DS.

[93]  Philip Koopman,et al.  Credible Autonomy Safety Argumentation , 2018 .

[94]  Quoc V. Le,et al.  Learning Data Augmentation Strategies for Object Detection , 2019, ECCV.

[95]  Carolyn Penstein Rosé,et al.  Multi-Domain Learning: When Do Domains Matter? , 2012, EMNLP-CoNLL.

[96]  Gillian K. Hadfield,et al.  Regulatory Markets for AI Safety , 2019, ArXiv.

[97]  Markus Maurer,et al.  Ontology based Scene Creation for the Development of Automated Vehicles , 2017, 2018 IEEE Intelligent Vehicles Symposium (IV).

[98]  Suman Jana,et al.  DeepTest: Automated Testing of Deep-Neural-Network-Driven Autonomous Cars , 2017, 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE).

[99]  Hao Cheng,et al.  Adversarial Robustness vs. Model Compression, or Both? , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[100]  Saeed Mozaffari,et al.  Transferable Universal Adversarial Perturbations Using Generative Models , 2020, ArXiv.

[101]  Yang Zhao,et al.  Deep High-Resolution Representation Learning for Visual Recognition , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[102]  Iasonas Kokkinos,et al.  UberNet: Training a Universal Convolutional Neural Network for Low-, Mid-, and High-Level Vision Using Diverse Datasets and Limited Memory , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[103]  Timo Sämann,et al.  Strategy to Increase the Safety of a DNN-based Perception for HAD Systems , 2020, ArXiv.

[104]  Carl Doersch,et al.  Tutorial on Variational Autoencoders , 2016, ArXiv.

[105]  Pieter Abbeel,et al.  InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets , 2016, NIPS.

[106]  Mark J. F. Gales,et al.  Predictive Uncertainty Estimation via Prior Networks , 2018, NeurIPS.

[107]  Gregory Diamos,et al.  Fast Spectrogram Inversion Using Multi-Head Convolutional Neural Networks , 2018, IEEE Signal Processing Letters.

[108]  Marin Orsic,et al.  Discriminative out-of-distribution detection for semantic segmentation , 2018, ArXiv.

[109]  Robert B. Fisher,et al.  Fine-grained Recognition in the Noisy Wild: Sensitivity Analysis of Convolutional Neural Networks Approaches , 2016, BMVC.

[110]  Mei Wang,et al.  Deep Visual Domain Adaptation: A Survey , 2018, Neurocomputing.

[111]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[112]  Zhao Chen,et al.  GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks , 2017, ICML.

[113]  Yizhou Wang,et al.  L_DMI: A Novel Information-theoretic Loss Function for Training Deep Nets Robust to Label Noise , 2019, NeurIPS.

[114]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[115]  Shawn D. Newsam,et al.  Improving Semantic Segmentation via Video Propagation and Label Relaxation , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[116]  Sebastian Schulze,et al.  Bayesian Optimization for Iterative Learning , 2020, NeurIPS.

[117]  Jaakko Lehtinen,et al.  Progressive Growing of GANs for Improved Quality, Stability, and Variation , 2017, ICLR.

[118]  Blaise Agüera y Arcas,et al.  Communication-Efficient Learning of Deep Networks from Decentralized Data , 2016, AISTATS.

[119]  Andrew J. Davison,et al.  End-To-End Multi-Task Learning With Attention , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[120]  M. C. Jones,et al.  A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .

[121]  Vibhav Vineet,et al.  Conditional Random Fields as Recurrent Neural Networks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[122]  Geoffrey E. Hinton,et al.  Dynamic Routing Between Capsules , 2017, NIPS.

[123]  Song Han,et al.  Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding , 2015, ICLR.

[124]  Nina Narodytska,et al.  Simple Black-Box Adversarial Attacks on Deep Neural Networks , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[125]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[126]  Ramin Zabih,et al.  Dynamic Programming and Graph Algorithms in Computer Vision , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[127]  Matthew Botvinick,et al.  On the importance of single directions for generalization , 2018, ICLR.

[128]  Yoav Goldberg,et al.  LaVAN: Localized and Visible Adversarial Noise , 2018, ICML.

[129]  Qiang Chen,et al.  Network In Network , 2013, ICLR.

[130]  Ullrich Köthe,et al.  Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN) , 2020, ICLR.

[131]  Federico Tombari,et al.  Sampling-Free Epistemic Uncertainty Estimation Using Approximated Variance Propagation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[132]  James Zijun Wang,et al.  Rethinking the Smaller-Norm-Less-Informative Assumption in Channel Pruning of Convolution Layers , 2018, ICLR.

[133]  Nina Narodytska,et al.  Simple Black-Box Adversarial Perturbations for Deep Networks , 2016, ArXiv.

[134]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[135]  Patrick Pérez,et al.  ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[136]  Yuning Jiang,et al.  Acquisition of Localization Confidence for Accurate Object Detection , 2018, ECCV.

[137]  Frank Hutter,et al.  Efficient Multi-Objective Neural Architecture Search via Lamarckian Evolution , 2018, ICLR.

[138]  Ping Li,et al.  Outlier Detection and Data Clustering via Innovation Search , 2019, ArXiv.

[139]  Yair Weiss,et al.  Why do deep convolutional networks generalize so poorly to small image transformations? , 2018, J. Mach. Learn. Res..

[140]  Rares Ambrus,et al.  Semantically-Guided Representation Learning for Self-Supervised Monocular Depth , 2020, ICLR.

[141]  Georg Langs,et al.  Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery , 2017, IPMI.

[142]  Tim Fingscheidt,et al.  On Low-Bitrate Image Compression for Distributed Automotive Perception: Higher Peak SNR Does Not Mean Better Semantic Segmentation , 2019, 2019 IEEE Intelligent Vehicles Symposium (IV).

[143]  Stefan Milz,et al.  Robust Semantic Video Segmentation through Confidence-based Feature Map Warping , 2019, CSCS.

[144]  Masahiro Suzuki,et al.  Out-of-Distribution Detection Using Layerwise Uncertainty in Deep Neural Networks , 2019 .

[145]  Seyed-Mohsen Moosavi-Dezfooli,et al.  Universal Adversarial Perturbations , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[146]  Russell Reed,et al.  Pruning algorithms-a survey , 1993, IEEE Trans. Neural Networks.

[147]  Vijay Arya,et al.  Model Extraction Warning in MLaaS Paradigm , 2017, ACSAC.

[148]  Bernt Schiele,et al.  Long-Term On-board Prediction of People in Traffic Scenes Under Uncertainty , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[149]  Ryan R. Curtin,et al.  Detecting Adversarial Samples from Artifacts , 2017, ArXiv.

[150]  Deliang Fan,et al.  Parametric Noise Injection: Trainable Randomness to Improve Deep Neural Network Robustness Against Adversarial Attack , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[151]  Anselm Haselhoff,et al.  Multivariate Confidence Calibration for Object Detection , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[152]  Dan Klein,et al.  Fast Exact Inference with a Factored Model for Natural Language Parsing , 2002, NIPS.

[153]  Ian S. Fischer,et al.  Adversarial Transformation Networks: Learning to Generate Adversarial Examples , 2017, ArXiv.

[154]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[155]  Jonathon Shlens,et al.  Explaining and Harnessing Adversarial Examples , 2014, ICLR.

[156]  Alok Aggarwal,et al.  Regularized Evolution for Image Classifier Architecture Search , 2018, AAAI.

[157]  Fu Jie Huang,et al.  A Tutorial on Energy-Based Learning , 2006 .

[158]  Wei Wei,et al.  Complement Objective Training , 2019, ICLR.

[159]  Rama Chellappa,et al.  UPSET and ANGRI : Breaking High Performance Image Classifiers , 2017, ArXiv.

[160]  Klaus H. Maier-Hein,et al.  A Probabilistic U-Net for Segmentation of Ambiguous Images , 2018, NeurIPS.

[161]  Bohyung Han,et al.  Learning for Single-Shot Confidence Calibration in Deep Neural Networks Through Stochastic Inferences , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[162]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[163]  Fan Zhang,et al.  Recent progress and trends in predictive visual analytics , 2017, Frontiers of Computer Science.

[164]  Daniel Cremers,et al.  Regularization for Deep Learning: A Taxonomy , 2017, ArXiv.

[165]  Ananthram Swami,et al.  Practical Black-Box Attacks against Machine Learning , 2016, AsiaCCS.

[166]  Marco Gori,et al.  Image Classification Using Deep Learning and Prior Knowledge , 2018, AAAI Workshops.

[167]  Thomas Wolf,et al.  Studying Invariances of Trained Convolutional Neural Networks , 2018, ArXiv.

[168]  Kirthevasan Kandasamy,et al.  Neural Architecture Search with Bayesian Optimisation and Optimal Transport , 2018, NeurIPS.

[169]  Zhangyang Wang,et al.  Adversarially Trained Model Compression: When Robustness Meets Efficiency , 2019, ArXiv.

[170]  Alan L. Yuille,et al.  Improving Transferability of Adversarial Examples With Input Diversity , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[171]  Heinz Handels,et al.  Interpretable explanations of black box classifiers applied on medical images by meaningful perturbations using variational autoencoders , 2019, Medical Imaging: Image Processing.

[172]  Quoc V. Le,et al.  Efficient Neural Architecture Search via Parameter Sharing , 2018, ICML.

[173]  Martin Wattenberg,et al.  Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) , 2017, ICML.

[174]  Ryan P. Adams,et al.  Revisiting uncertainty in graph cut solutions , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[175]  Ming Yang,et al.  Compressing Deep Convolutional Networks using Vector Quantization , 2014, ArXiv.

[176]  Moustapha Cissé,et al.  Countering Adversarial Images using Input Transformations , 2018, ICLR.

[177]  Randy C. Paffenroth,et al.  Anomaly Detection with Robust Deep Autoencoders , 2017, KDD.

[178]  Iain Murray,et al.  Introduction to Gaussian Processes , 2008 .

[179]  Mykel J. Kochenderfer,et al.  Algorithms for Verifying Deep Neural Networks , 2019, Found. Trends Optim..

[180]  Mark Harman,et al.  Machine Learning Testing: Survey, Landscapes and Horizons , 2019, IEEE Transactions on Software Engineering.

[181]  Jürgen Schmidhuber,et al.  Training Very Deep Networks , 2015, NIPS.

[182]  Joachim Bingel,et al.  Sluice networks: Learning what to share between loosely related tasks , 2017, ArXiv.

[183]  Jorge Cadima,et al.  Principal component analysis: a review and recent developments , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[184]  Alexander Binder,et al.  Explaining nonlinear classification decisions with deep Taylor decomposition , 2015, Pattern Recognit..

[185]  Tim Fingscheidt,et al.  On Temporal Context Information for Hybrid BLSTM-Based Phoneme Recognition , 2019, 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU).

[186]  David Lopez-Paz,et al.  Revisiting Classifier Two-Sample Tests , 2016, ICLR.

[187]  Tatsuya Harada,et al.  Domain Generalization Using a Mixture of Multiple Latent Domains , 2019, AAAI.

[188]  Xiaochun Cao,et al.  ComDefend: An Efficient Image Compression Model to Defend Adversarial Examples , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[189]  Dit-Yan Yeung,et al.  Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting , 2015, NIPS.

[190]  Peter Schlicht,et al.  On the Robustness of Redundant Teacher-Student Frameworks for Semantic Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[191]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[192]  Tim Fingscheidt,et al.  Towards Corner Case Detection for Autonomous Driving , 2019, 2019 IEEE Intelligent Vehicles Symposium (IV).

[193]  Francisco Herrera,et al.  A unifying view on dataset shift in classification , 2012, Pattern Recognit..

[194]  Matthias Hein,et al.  Why ReLU Networks Yield High-Confidence Predictions Far Away From the Training Data and How to Mitigate the Problem , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[195]  P. S. Sastry,et al.  Robust Loss Functions for Learning Multi-class Classifiers , 2018, 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[196]  Lennart Svensson,et al.  LIDAR-Camera Fusion for Road Detection Using Fully Convolutional Neural Networks , 2018, Robotics Auton. Syst..

[197]  Christopher Burgess,et al.  beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.

[198]  Lawrence Carin,et al.  Learning Autoencoders with Relational Regularization , 2020, ICML.

[199]  Navdeep Jaitly,et al.  Adversarial Autoencoders , 2015, ArXiv.

[200]  Stéphane Canu,et al.  L1-norm double backpropagation adversarial defense , 2019, ESANN.

[201]  Aaron Klein,et al.  BOHB: Robust and Efficient Hyperparameter Optimization at Scale , 2018, ICML.

[202]  Yongxin Yang,et al.  Learning to Generalize: Meta-Learning for Domain Generalization , 2017, AAAI.

[203]  Wouter Tirry,et al.  Fully Convolutional Recurrent Networks for Speech Enhancement , 2020, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[204]  Andrea Vedaldi,et al.  Efficient Parametrization of Multi-domain Deep Neural Networks , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[205]  Andrew Gordon Wilson,et al.  Practical Multi-fidelity Bayesian Optimization for Hyperparameter Tuning , 2019, UAI.

[206]  Ashis Pati,et al.  Attribute-based Regularization of VAE Latent Spaces , 2020, ArXiv.

[207]  Kristin A. Cook,et al.  Illuminating the Path: The Research and Development Agenda for Visual Analytics , 2005 .

[208]  Sergey Ioffe,et al.  Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning , 2016, AAAI.

[209]  Stefano Ermon,et al.  Accurate Uncertainties for Deep Learning Using Calibrated Regression , 2018, ICML.

[210]  Tao Wei,et al.  Fooling Detection Alone is Not Enough: Adversarial Attack against Multiple Object Tracking , 2020, ICLR.

[211]  Hervé Delingette,et al.  Sampling image segmentations for uncertainty quantification , 2016, Medical Image Anal..

[212]  Sebastian Thrun,et al.  Robotic mapping: a survey , 2003 .

[213]  Bernhard Schölkopf,et al.  Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations , 2018, ICML.

[214]  Alex Kendall,et al.  Concrete Dropout , 2017, NIPS.

[215]  Manu Mathew,et al.  Embedded low-power deep learning with TIDL , 2017 .

[216]  Riccardo Miotto,et al.  A Generative Context Model for Semantic Music Annotation and Retrieval , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[217]  Andrew Y. Ng,et al.  Reading Digits in Natural Images with Unsupervised Feature Learning , 2011 .

[218]  Gabriela Csurka,et al.  Domain Adaptation for Visual Applications: A Comprehensive Survey , 2017, ArXiv.

[219]  Bernhard Schölkopf,et al.  Wasserstein Auto-Encoders , 2017, ICLR.

[220]  Tao Liu,et al.  Feature Distillation: DNN-Oriented JPEG Compression Against Adversarial Examples , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[221]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[222]  Rémi Gribonval,et al.  And the Bit Goes Down: Revisiting the Quantization of Neural Networks , 2019, ICLR.

[223]  Zhuowen Tu,et al.  Aggregated Residual Transformations for Deep Neural Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[224]  Maya Cakmak,et al.  Power to the People: The Role of Humans in Interactive Machine Learning , 2014, AI Mag..

[225]  Hanan Samet,et al.  Pruning Filters for Efficient ConvNets , 2016, ICLR.

[226]  Xianglong Liu,et al.  Towards Unified INT8 Training for Convolutional Neural Network , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[227]  Yi Yang,et al.  Random Erasing Data Augmentation , 2017, AAAI.

[228]  Wei Xu,et al.  Every Pixel Counts ++: Joint Learning of Geometry and Motion with 3D Holistic Understanding , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[229]  Lalana Kagal,et al.  Explaining Explanations: An Overview of Interpretability of Machine Learning , 2018, 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA).

[230]  Daniel A. Keim,et al.  Visual analytics: how much visualization and how much analytics? , 2010, SKDD.

[231]  Quoc V. Le,et al.  AutoAugment: Learning Augmentation Strategies From Data , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[232]  Brian J. Taylor,et al.  Methods and Procedures for the Verification and Validation of Artificial Neural Networks , 2005 .

[233]  José M. F. Moura,et al.  Adversarial Multiple Source Domain Adaptation , 2018, NeurIPS.

[234]  Yuning Jiang,et al.  Unified Perceptual Parsing for Scene Understanding , 2018, ECCV.

[235]  Alex ChiChung Kot,et al.  Domain Generalization with Adversarial Feature Learning , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[236]  Jungwon Lee,et al.  Universal Deep Neural Network Compression , 2018, IEEE Journal of Selected Topics in Signal Processing.

[237]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[238]  Toby P. Breckon,et al.  GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training , 2018, ACCV.

[239]  Kaiming He,et al.  Exploring the Limits of Weakly Supervised Pretraining , 2018, ECCV.

[240]  Gabriela Csurka,et al.  A Comprehensive Survey on Domain Adaptation for Visual Applications , 2017, Domain Adaptation in Computer Vision Applications.

[241]  Joan Bruna,et al.  Intriguing properties of neural networks , 2013, ICLR.

[242]  Yoshua Bengio,et al.  Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation , 2013, ArXiv.

[243]  Ekin D. Cubuk,et al.  Improving Robustness Without Sacrificing Accuracy with Patch Gaussian Augmentation , 2019, ArXiv.

[244]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[245]  Avanti Shrikumar,et al.  Learning Important Features Through Propagating Activation Differences , 2017, ICML.

[246]  Bernhard Schölkopf,et al.  A Kernel Method for the Two-Sample-Problem , 2006, NIPS.

[247]  Ryan Cotterell,et al.  Probabilistic Typology: Deep Generative Models of Vowel Inventories , 2017, ACL.

[248]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[249]  Ming-Yu Liu,et al.  Localization-Aware Active Learning for Object Detection , 2018, ACCV.

[250]  Graham W. Taylor,et al.  Learning Confidence for Out-of-Distribution Detection in Neural Networks , 2018, ArXiv.

[251]  Gernot A. Fink,et al.  Detection and Retrieval of Out-of-Distribution Objects in Semantic Segmentation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[252]  Pushmeet Kohli,et al.  Simultaneous Segmentation and Pose Estimation of Humans Using Dynamic Graph Cuts , 2008, International Journal of Computer Vision.

[253]  Koby Crammer,et al.  A theory of learning from different domains , 2010, Machine Learning.

[254]  Per Ola Kristensson,et al.  A Review of User Interface Design for Interactive Machine Learning , 2018, ACM Trans. Interact. Intell. Syst..

[255]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[256]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[257]  Elisa Ricci,et al.  Towards Recognizing Unseen Categories in Unseen Domains , 2020, ECCV.

[258]  Mengjie Zhang,et al.  Domain Adaptive Neural Networks for Object Recognition , 2014, PRICAI.

[259]  Jian Sun,et al.  Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[260]  Aleksander Madry,et al.  Adversarial Robustness as a Prior for Learned Representations , 2019 .

[261]  Vijay Vasudevan,et al.  Learning Transferable Architectures for Scalable Image Recognition , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[262]  Daniel Hernández-Lobato,et al.  Deep Gaussian Processes for Regression using Approximate Expectation Propagation , 2016, ICML.

[263]  Frank Hutter,et al.  Neural Architecture Search: A Survey , 2018, J. Mach. Learn. Res..

[264]  Le Song,et al.  A Hilbert Space Embedding for Distributions , 2007, Discovery Science.

[265]  Eric P. Xing,et al.  Learning Robust Representations by Projecting Superficial Statistics Out , 2018, ICLR.

[266]  Leon A. Gatys,et al.  A Neural Algorithm of Artistic Style , 2015, ArXiv.

[267]  Thomas Brox,et al.  Universal Adversarial Perturbations Against Semantic Image Segmentation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[268]  Cristian Sminchisescu,et al.  Semantic Video Segmentation by Gated Recurrent Flow Propagation , 2016, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[269]  Moustapha Cissé,et al.  Parseval Networks: Improving Robustness to Adversarial Examples , 2017, ICML.

[270]  Atul Prakash,et al.  Robust Physical-World Attacks on Deep Learning Visual Classification , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[271]  Alexander Binder,et al.  Unmasking Clever Hans predictors and assessing what machines really learn , 2019, Nature Communications.

[272]  Simon Burton,et al.  Confidence Arguments for Evidence of Performance in Machine Learning for Highly Automated Driving Functions , 2019, SAFECOMP Workshops.

[273]  Akira Nakamura,et al.  Differentiable Quantization of Deep Neural Networks , 2019, ArXiv.

[274]  W. Wertz Statistical density estimation: A survey , 1978 .

[275]  Markus H. Gross,et al.  A unified view of gradient-based attribution methods for Deep Neural Networks , 2017, NIPS 2017.

[276]  Carl E. Rasmussen,et al.  In Advances in Neural Information Processing Systems , 2011 .

[277]  Carsten Rother,et al.  CEREALS - Cost-Effective REgion-based Active Learning for Semantic Segmentation , 2018, BMVC.

[278]  Zoubin Ghahramani,et al.  Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning , 2015, ICML.

[279]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[280]  Zhiqiang Shen,et al.  Learning Efficient Convolutional Networks through Network Slimming , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[281]  Kilian Q. Weinberger,et al.  Snapshot Ensembles: Train 1, get M for free , 2017, ICLR.

[282]  Lin Bai,et al.  Learning More Robust Features with Adversarial Training , 2018, ArXiv.

[283]  Andrew Zisserman,et al.  Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps , 2013, ICLR.

[284]  Ning Chen,et al.  Rethinking Softmax Cross-Entropy Loss for Adversarial Robustness , 2019, ICLR.

[285]  Martin Schels,et al.  Concept Enforcement and Modularization as Methods for the ISO 26262 Safety Argumentation of Neural Networks , 2020 .

[286]  Lina Yao,et al.  Deep Neural Network Hyperparameter Optimization with Orthogonal Array Tuning , 2019, ICONIP.

[287]  Lucas Theis,et al.  Faster gaze prediction with dense networks and Fisher pruning , 2018, ArXiv.

[288]  Thomas G. Dietterich,et al.  Benchmarking Neural Network Robustness to Common Corruptions and Perturbations , 2018, ICLR.

[289]  Bianca Zadrozny,et al.  Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers , 2001, ICML.

[290]  Zoubin Ghahramani,et al.  Deep Bayesian Active Learning with Image Data , 2017, ICML.

[291]  Artur Gramacki,et al.  Nonparametric Kernel Density Estimation and Its Computational Aspects , 2017 .

[292]  Peter Schlicht,et al.  Robust Semantic Segmentation by Redundant Networks With a Layer-Specific Loss Contribution and Majority Vote , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[293]  Silvio Savarese,et al.  Generalized Intersection Over Union: A Metric and a Loss for Bounding Box Regression , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[294]  David A. Wagner,et al.  Towards Evaluating the Robustness of Neural Networks , 2016, 2017 IEEE Symposium on Security and Privacy (SP).

[295]  Zhetao Li,et al.  Weighted and Class-Specific Maximum Mean Discrepancy for Unsupervised Domain Adaptation , 2020, IEEE Transactions on Multimedia.

[296]  Tara N. Sainath,et al.  Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups , 2012, IEEE Signal Processing Magazine.

[297]  Lijun Zhang,et al.  Improving the Robustness of Deep Neural Networks via Adversarial Training with Triplet Loss , 2019, IJCAI.

[298]  Xiangyu Zhang,et al.  Channel Pruning for Accelerating Very Deep Neural Networks , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[299]  Benny Pinkas,et al.  Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring , 2018, USENIX Security Symposium.

[300]  Matthias Hein,et al.  Towards neural networks that provably know when they don't know , 2020, ICLR.

[301]  Honglak Lee,et al.  Learning Structured Output Representation using Deep Conditional Generative Models , 2015, NIPS.

[302]  Roberto Cipolla,et al.  MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving , 2016, 2018 IEEE Intelligent Vehicles Symposium (IV).

[303]  Ankur Taly,et al.  Explainable machine learning in deployment , 2020, FAT*.

[304]  Geoffrey E. Hinton,et al.  Deep Boltzmann Machines , 2009, AISTATS.

[305]  Taghi M. Khoshgoftaar,et al.  A survey on Image Data Augmentation for Deep Learning , 2019, Journal of Big Data.

[306]  L. Davis,et al.  Making an Invisibility Cloak: Real World Adversarial Attacks on Object Detectors , 2019, ECCV.

[307]  Thijs Westerveld,et al.  Using generative probabilistic models for multimedia retrieval , 2005, SIGF.

[308]  Graham W. Taylor,et al.  Dataset Augmentation in Feature Space , 2017, ICLR.

[309]  Michael Kirby,et al.  Supervised Dimensionality Reduction and Visualization using Centroid-encoder , 2020, J. Mach. Learn. Res..

[310]  Fan Zhang,et al.  Stealing Machine Learning Models via Prediction APIs , 2016, USENIX Security Symposium.

[311]  Amos Storkey,et al.  When Training and Test Sets are Different: Characterising Learning Transfer , 2013 .

[312]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[313]  Yue Zhao,et al.  DLFuzz: differential fuzzing testing of deep learning systems , 2018, ESEC/SIGSOFT FSE.

[314]  Geoffrey E. Hinton,et al.  Regularizing Neural Networks by Penalizing Confident Output Distributions , 2017, ICLR.

[315]  Kibok Lee,et al.  A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks , 2018, NeurIPS.

[316]  David Wagner,et al.  Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods , 2017, AISec@CCS.

[317]  Mahdi Pakdaman Naeini,et al.  Binary Classifier Calibration Using an Ensemble of Near Isotonic Regression Models , 2015, 2016 IEEE 16th International Conference on Data Mining (ICDM).

[318]  Geoffrey E. Hinton,et al.  Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer , 2017, ICLR.

[319]  Lorenzo Torresani,et al.  Learning Spatiotemporal Features with 3D Convolutional Networks , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[320]  Ankur Taly,et al.  Axiomatic Attribution for Deep Networks , 2017, ICML.

[321]  Leon A. Gatys,et al.  Image Style Transfer Using Convolutional Neural Networks , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[322]  Qilong Wang,et al.  Mind the Class Weight Bias: Weighted Maximum Mean Discrepancy for Unsupervised Domain Adaptation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[323]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[324]  Xin He,et al.  Simple Physical Adversarial Examples against End-to-End Autonomous Driving Models , 2019, 2019 IEEE International Conference on Embedded Software and Systems (ICESS).

[325]  Yann LeCun,et al.  Optimal Brain Damage , 1989, NIPS.

[326]  David Barber,et al.  A Scalable Laplace Approximation for Neural Networks , 2018, ICLR.

[327]  Valerio Pascucci,et al.  Visualizing the Uncertainty of Graph‐based 2D Segmentation with Min‐path Stability , 2017, Comput. Graph. Forum.

[328]  Christopher K. I. Williams,et al.  A Framework for the Quantitative Evaluation of Disentangled Representations , 2018, ICLR.

[329]  Sergey Levine,et al.  Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks , 2017, ICML.

[330]  Jun Yin,et al.  A Closer Look at Disentangling in β-VAE , 2019, 2019 53rd Asilomar Conference on Signals, Systems, and Computers.

[331]  Jason Yosinski,et al.  Deep neural networks are easily fooled: High confidence predictions for unrecognizable images , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[332]  Sebastian Sudholt,et al.  Safety Concerns and Mitigation Approaches Regarding the Use of Deep Learning in Safety-Critical Perception Tasks , 2020, SAFECOMP Workshops.

[333]  Yi Yang,et al.  Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks , 2018, IJCAI.

[334]  Bernhard Schölkopf,et al.  A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..

[335]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[336]  Alexander A. Alemi,et al.  β-VAEs can retain label information even at high compression , 2018, ArXiv.

[337]  Mahmood Fathy,et al.  STFCN: Spatio-Temporal FCN for Semantic Video Segmentation , 2016, ArXiv.

[338]  Ross B. Girshick,et al.  Mask R-CNN , 2017, 1703.06870.

[339]  Lars Schmidt-Thieme,et al.  Hyp-RL : Hyperparameter Optimization by Reinforcement Learning , 2019, ArXiv.

[340]  Aapo Hyvärinen,et al.  Variational Autoencoders and Nonlinear ICA: A Unifying Framework , 2019, AISTATS.

[341]  David A. Wagner,et al.  Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples , 2018, ICML.

[342]  Jie Liu,et al.  Single-Path NAS: Designing Hardware-Efficient ConvNets in less than 4 Hours , 2019, ECML/PKDD.

[343]  Kouichi Sakurai,et al.  One Pixel Attack for Fooling Deep Neural Networks , 2017, IEEE Transactions on Evolutionary Computation.

[344]  Julien Cornebise,et al.  Weight Uncertainty in Neural Networks , 2015, ArXiv.

[345]  Ling Shao,et al.  Adversarial Defense by Restricting the Hidden Space of Deep Neural Networks , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[346]  Guillermo Sapiro,et al.  Learning Robust Low-Rank Representations , 2012, ArXiv.

[347]  Tameru Hailesilassie,et al.  Rule Extraction Algorithm for Deep Neural Networks: A Review , 2016, ArXiv.

[348]  Hao Chen,et al.  Unsupervised Domain Adaptation of ConvNets for Medical Image Segmentation via Adversarial Learning , 2019, Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics.

[349]  Anna Khoreva,et al.  Grid Saliency for Context Explanations of Semantic Segmentation , 2019, NeurIPS.

[350]  Bernhard Schölkopf,et al.  Domain Generalization via Invariant Feature Representation , 2013, ICML.

[351]  Seong Joon Oh,et al.  Towards Reverse-Engineering Black-Box Neural Networks , 2017, ICLR.

[352]  Jun Zhu,et al.  Max-Mahalanobis Linear Discriminant Analysis Networks , 2018, ICML.

[353]  George Atia,et al.  Coherence Pursuit: Fast, Simple, and Robust Principal Component Analysis , 2016, IEEE Transactions on Signal Processing.

[354]  Mengjie Zhang,et al.  Domain Generalization for Object Recognition with Multi-task Autoencoders , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[355]  T. Lumley,et al.  PRINCIPAL COMPONENT ANALYSIS AND FACTOR ANALYSIS , 2004, Statistical Methods for Biomedical Research.

[356]  Kilian Q. Weinberger,et al.  On Calibration of Modern Neural Networks , 2017, ICML.

[357]  Jaegul Choo,et al.  Visual Analytics for Explainable Deep Learning , 2018, IEEE Computer Graphics and Applications.

[358]  Max Welling,et al.  Visualizing Deep Neural Network Decisions: Prediction Difference Analysis , 2017, ICLR.

[359]  Chun Yuan,et al.  A Self-Supervised Feature Map Augmentation (FMA) Loss and Combined Augmentations Finetuning to Efficiently Improve the Robustness of CNNs , 2020, CSCS.

[360]  Jie Li,et al.  Universal Adversarial Perturbation via Prior Driven Uncertainty Approximation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[361]  Yann LeCun,et al.  The Loss Surfaces of Multilayer Networks , 2014, AISTATS.

[362]  Alireza Mehridehnavi,et al.  Macular OCT Classification Using a Multi-Scale Convolutional Neural Network Ensemble , 2018, IEEE Transactions on Medical Imaging.

[363]  Tim Fingscheidt,et al.  Systematization of Corner Cases for Visual Perception in Automated Driving , 2020, 2020 IEEE Intelligent Vehicles Symposium (IV).

[364]  Edward Raff,et al.  Barrage of Random Transforms for Adversarially Robust Defense , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[365]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[366]  Daniel Kroening,et al.  Concolic Testing for Deep Neural Networks , 2018, 2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE).

[367]  Ion Stoica,et al.  Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules , 2019, ICML.

[368]  Achraf Oussidi,et al.  Deep generative models: Survey , 2018, 2018 International Conference on Intelligent Systems and Computer Vision (ISCV).

[369]  Quoc V. Le,et al.  RandAugment: Practical data augmentation with no separate search , 2019, ArXiv.

[370]  Sjoerd van Steenkiste,et al.  Are Disentangled Representations Helpful for Abstract Visual Reasoning? , 2019, NeurIPS.

[371]  Kevin Gimpel,et al.  A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks , 2016, ICLR.

[372]  Andreas Bär,et al.  Improved Noise and Attack Robustness for Semantic Segmentation by Using Multi-Task Training with Self-Supervised Depth Estimation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[373]  Amos Storkey,et al.  Meta-Learning in Neural Networks: A Survey , 2020, IEEE transactions on pattern analysis and machine intelligence.

[374]  Yunhui Guo,et al.  A Survey on Methods and Theories of Quantized Neural Networks , 2018, ArXiv.

[375]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[376]  Bir Bhanu,et al.  ShieldNets: Defending Against Adversarial Attacks Using Probabilistic Adversarial Robustness , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[377]  Shaogang Gong,et al.  Semantic Autoencoder for Zero-Shot Learning , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[378]  Aleksander Madry,et al.  A Rotation and a Translation Suffice: Fooling CNNs with Simple Transformations , 2017, ArXiv.

[379]  Quoc V. Le,et al.  Searching for Activation Functions , 2018, arXiv.

[380]  Sebastian Nowozin,et al.  Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift , 2019, NeurIPS.

[381]  Thomas G. Dietterich,et al.  Deep Anomaly Detection with Outlier Exposure , 2018, ICLR.

[382]  Nikos Komodakis,et al.  Markov Random Field modeling, inference & learning in computer vision & image understanding: A survey , 2013, Comput. Vis. Image Underst..

[383]  James Bailey,et al.  Adversarial Camouflage: Hiding Physical-World Attacks With Natural Styles , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[384]  F. Zelezný,et al.  Revisiting Neural-Symbolic Learning Cycle , 2019, NeSy@IJCAI.

[385]  Toby P. Breckon,et al.  Evaluation of a Dual Convolutional Neural Network Architecture for Object-wise Anomaly Detection in Cluttered X-ray Security Imagery , 2019, 2019 International Joint Conference on Neural Networks (IJCNN).

[386]  拓海 杉山,et al.  “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”の学習報告 , 2017 .

[387]  Jorge Nocedal,et al.  On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima , 2016, ICLR.

[388]  Xiaoxiao Li,et al.  Deep Learning Markov Random Field for Semantic Segmentation , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[389]  Isay Katsman,et al.  Generative Adversarial Perturbations , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[390]  Zhidong Deng,et al.  SegStereo: Exploiting Semantic Information for Disparity Estimation , 2018, ECCV.

[391]  Ross Maciejewski,et al.  The State‐of‐the‐Art in Predictive Visual Analytics , 2017, Comput. Graph. Forum.

[392]  Joachim Diederich,et al.  The truth will come to light: directions and challenges in extracting the knowledge embedded within trained artificial neural networks , 1998, IEEE Trans. Neural Networks.

[393]  George Papandreou,et al.  Perturb-and-MAP random fields: Using discrete optimization to learn and sample from energy models , 2011, 2011 International Conference on Computer Vision.

[394]  Peter Schlicht,et al.  Self-Supervised Domain Mismatch Estimation for Autonomous Perception , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[395]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[396]  Daniel Kroening,et al.  Structural Test Coverage Criteria for Deep Neural Networks , 2019, 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion).

[397]  Chih-Yao Ma,et al.  Frustratingly Simple Domain Generalization via Image Stylization , 2020, ArXiv.

[398]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[399]  Jianxin Wu,et al.  ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[400]  Matthias Woehrle,et al.  Open Questions in Testing of Learned Computer Vision Functions for Automated Driving , 2019, SAFECOMP Workshops.

[401]  Peter V. Gehler,et al.  Semantic Video CNNs Through Representation Warping , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[402]  Tom Diethe,et al.  Distribution Calibration for Regression , 2019, ICML.

[403]  George Papandreou,et al.  Rethinking Atrous Convolution for Semantic Image Segmentation , 2017, ArXiv.

[404]  James T. Kwok,et al.  Generalizing from a Few Examples , 2019, ACM Comput. Surv..

[405]  Subhransu Maji,et al.  On Sampling from the Gibbs Distribution with Random Maximum A-Posteriori Perturbations , 2013, NIPS.

[406]  Mark D. McDonnell,et al.  Understanding Data Augmentation for Classification: When to Warp? , 2016, 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA).

[407]  Alan L. Yuille,et al.  Feature Denoising for Improving Adversarial Robustness , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[408]  Charles Blundell,et al.  Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles , 2016, NIPS.

[409]  Andrea Vedaldi,et al.  Interpretable Explanations of Black Boxes by Meaningful Perturbation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[410]  Michael I. Jordan,et al.  Deep Transfer Learning with Joint Adaptation Networks , 2016, ICML.

[411]  Peter A. Flach,et al.  Non-Parametric Calibration of Probabilistic Regression , 2018, ArXiv.

[412]  Toon Goedemé,et al.  Fooling Automated Surveillance Cameras: Adversarial Patches to Attack Person Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[413]  Konstantinos Kamnitsas,et al.  Unsupervised domain adaptation in brain lesion segmentation with adversarial networks , 2016, IPMI.

[414]  Seyed-Mohsen Moosavi-Dezfooli,et al.  DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[415]  Swami Sankaranarayanan,et al.  MetaReg: Towards Domain Generalization using Meta-Regularization , 2018, NeurIPS.

[416]  Pascal Frossard,et al.  Manitest: Are classifiers really invariant? , 2015, BMVC.

[417]  R. Srikant,et al.  Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks , 2017, ICLR.

[418]  Peter A. Flach,et al.  Beta calibration: a well-founded and easily implemented improvement on logistic calibration for binary classifiers , 2017, AISTATS.

[419]  Alex Kendall,et al.  What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? , 2017, NIPS.

[420]  Xin Liu,et al.  DPATCH: An Adversarial Patch Attack on Object Detectors , 2018, SafeAI@AAAI.

[421]  Samy Bengio,et al.  Adversarial Machine Learning at Scale , 2016, ICLR.

[422]  Bailing Zhang,et al.  Reliable Classification of Vehicle Types Based on Cascade Classifier Ensembles , 2013, IEEE Transactions on Intelligent Transportation Systems.

[423]  Minsuk Kahng,et al.  Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers , 2018, IEEE Transactions on Visualization and Computer Graphics.

[424]  Ankur P. Parikh,et al.  Thieves on Sesame Street! Model Extraction of BERT-based APIs , 2019, ICLR.

[425]  Andreas Krause,et al.  Learning Implicit Generative Models Using Differentiable Graph Tests , 2017, ArXiv.

[426]  Pin-Yu Chen,et al.  Adversarial T-Shirt! Evading Person Detectors in a Physical World , 2019, ECCV.

[427]  Anna Shcherbina,et al.  Not Just a Black Box: Learning Important Features Through Propagating Activation Differences , 2016, ArXiv.

[428]  Thomas Brox,et al.  Striving for Simplicity: The All Convolutional Net , 2014, ICLR.

[429]  Christoph H. Lampert,et al.  Attribute-Based Classification for Zero-Shot Visual Object Categorization , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[430]  T. Kathirvalavakumar,et al.  Rule extraction from neural networks — A comparative study , 2012, International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012).

[431]  Xiting Wang,et al.  Towards better analysis of machine learning models: A visual analytics perspective , 2017, Vis. Informatics.

[432]  Thomas Brox,et al.  Uncertainty Estimates and Multi-hypotheses Networks for Optical Flow , 2018, ECCV.

[433]  Yongxin Yang,et al.  Episodic Training for Domain Generalization , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[434]  Bo Chen,et al.  Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[435]  Samy Bengio,et al.  Adversarial examples in the physical world , 2016, ICLR.

[436]  Daniel A. Keim,et al.  Visual Interaction with Dimensionality Reduction: A Structured Literature Analysis , 2017, IEEE Transactions on Visualization and Computer Graphics.

[437]  Vinay P. Namboodiri,et al.  Deep active learning for object detection , 2018, BMVC.

[438]  Pushmeet Kohli,et al.  Measuring uncertainty in graph cut solutions , 2008, Comput. Vis. Image Underst..

[439]  Shuicheng Yan,et al.  Robust PCA in High-dimension: A Deterministic Approach , 2012, ICML.

[440]  Sebastian Thrun,et al.  Extracting Rules from Artifical Neural Networks with Distributed Representations , 1994, NIPS.

[441]  Dandelion Mané,et al.  DEFENSIVE QUANTIZATION: WHEN EFFICIENCY MEETS ROBUSTNESS , 2018 .

[442]  Seyed-Mohsen Moosavi-Dezfooli,et al.  Robustness via Curvature Regularization, and Vice Versa , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[443]  Martin Herrmann,et al.  Leveraging combinatorial testing for safety-critical computer vision datasets , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[444]  Daniel A. Keim,et al.  Visual Analytics: Definition, Process, and Challenges , 2008, Information Visualization.

[445]  Shunjun Wu,et al.  SAR Image Segmentation Based on Mixture Context and Wavelet Hidden-Class-Label Markov Random Field , 2007, Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007).

[446]  Constantine Caramanis,et al.  Robust PCA via Outlier Pursuit , 2010, IEEE Transactions on Information Theory.

[447]  Hans-Peter Kriegel,et al.  Integrating structured biological data by Kernel Maximum Mean Discrepancy , 2006, ISMB.

[448]  Cong Liu,et al.  Generating Adversarial Fragments with Adversarial Networks for Physical-world Implementation , 2019, ArXiv.

[449]  Xiaogang Wang,et al.  Object Detection in Videos with Tubelet Proposal Networks , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[450]  Wei Wei,et al.  Improving Adversarial Robustness via Guided Complement Entropy , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[451]  Daniel C. Castro,et al.  Domain Generalization via Model-Agnostic Learning of Semantic Features , 2019, NeurIPS.

[452]  Michael Siebers,et al.  Explaining Black-Box Classifiers with ILP - Empowering LIME with Aleph to Approximate Non-linear Decisions with Relational Rules , 2018, ILP.

[453]  H LampertChristoph,et al.  Attribute-Based Classification for Zero-Shot Visual Object Categorization , 2014 .