Practical application of pseudospectral optimization to robot path planning

To obtain minimum time or minimum energy trajectories for robots it is necessary to employ planning methods which adequately consider the platform’s dynamic properties. A variety of sampling, graph-based or local receding-horizon optimisation methods have previously been proposed. These typically use simplified kino-dynamic models to avoid the significant computational burden of solving this problem in a high dimensional state-space. In this paper we investigate solutions from the class of pseudospectral optimisation methods which have grown in favour amongst the optimal control community in recent years. These methods have high computational efficiency and rapid convergence properties. We present a practical application of such an approach to the robot path planning problem to provide a trajectory considering the robot’s dynamic properties. We extend the existing literature by augmenting the path constraints with sensed obstacles rather than predefined analytical functions to enable real world application.

[1]  Colin R. McInnes,et al.  An Earth Pole-Sitter Using Hybrid Propulsion , 2010 .

[2]  Anthony Stentz,et al.  The Focussed D* Algorithm for Real-Time Replanning , 1995, IJCAI.

[3]  M A Hurni,et al.  A Pseudospectral optimal motion planner for autonomous unmanned vehicles , 2010, Proceedings of the 2010 American Control Conference.

[4]  Alonzo Kelly,et al.  Reactive Nonholonomic Trajectory Generation via Parametric Optimal Control , 2003, Int. J. Robotics Res..

[5]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[6]  S. LaValle,et al.  Randomized Kinodynamic Planning , 2001 .

[7]  Oliver Brock,et al.  Planning Long Dynamically-Feasible Maneuvers for Autonomous Vehicles , 2009 .

[8]  Emilio Frazzoli,et al.  Incremental Sampling-based Algorithms for Optimal Motion Planning , 2010, Robotics: Science and Systems.

[9]  Richard E. Korf,et al.  Depth-First Iterative-Deepening: An Optimal Admissible Tree Search , 1985, Artif. Intell..

[10]  I. Michael Ross,et al.  Pseudospectral Motion Planning for Autonomous Vehicles , 2009 .

[11]  Zvi Shiller,et al.  Dynamic motion planning of autonomous vehicles , 1991, IEEE Trans. Robotics Autom..

[12]  Mark H. Overmars,et al.  A Comparative Study of Probabilistic Roadmap Planners , 2002, WAFR.

[13]  Zvi Shiller,et al.  Near-optimal navigation of high speed mobile robots on uneven terrain , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[15]  Alonzo Kelly,et al.  Optimal Rough Terrain Trajectory Generation for Wheeled Mobile Robots , 2007, Int. J. Robotics Res..

[16]  Michael Himmelsbach,et al.  Driving with tentacles: Integral structures for sensing and motion , 2008 .

[17]  Victor M. Becerra,et al.  Solving complex optimal control problems at no cost with PSOPT , 2010, 2010 IEEE International Symposium on Computer-Aided Control System Design.

[18]  I. Michael Ross,et al.  Pseudospectral Optimal Control: A Clear Road for Autonomous Intelligent Path Planning , 2007, AIAA Infotech@Aerospace 2007 Conference and Exhibit.

[19]  Wei Kang,et al.  Zero-propellant maneuver guidance , 2009, IEEE Control Systems.

[20]  Victor M. Becerra,et al.  PSOPT Optimal Control Solver User Manual , 2009 .

[21]  Oussama Khatib,et al.  Elastic bands: connecting path planning and control , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[22]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[23]  James J. Kuffner,et al.  OpenRAVE: A Planning Architecture for Autonomous Robotics , 2008 .

[24]  Alessandro De Luca IEEE Transactions on Robotics and Automation: Editorial , 2003 .