Vision-based Navigation Frame Mapping and Planning for Collision Avoidance for Miniature Air Vehicles

This paper presents a vision-based navigation frame mapping and path planning technique for collision avoidance for Miniature Air Vehicles. A depth map that represents the range and bearing to obstacles is obtained by computer vision. Based on the depth map, an extended Kalman Filter is used to estimate the range and bearing. Using this information, a map, constructed in polar coordinates, is created in the navigation frame of the MAV. The Rapidly-exploring Random Tree algorithm is employed to find a collision-free path in the navigation frame. The proposed algorithm was successfully implemented in both simulation and flight tests.

[1]  Shigang Yue,et al.  A Collision Detection System for a Mobile Robot Inspired by the Locust Visual System , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[2]  Shigang Yue,et al.  Visual motion pattern extraction and fusion for collision detection in complex dynamic scenes , 2006, Comput. Vis. Image Underst..

[3]  Tomaso A. Poggio,et al.  Motion Field and Optical Flow: Qualitative Properties , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Ta Camus,et al.  Real-time quantized optical flow , 1995, Proceedings of Conference on Computer Architectures for Machine Perception.

[5]  Andrew Curtis,et al.  Path Planning for Unmanned Air and Ground Vehicles in Urban Environments , 2008 .

[6]  Azriel Rosenfeld,et al.  The Applicability of Green's Theorem to Computation of Rate of Approach , 1999, International Journal of Computer Vision.

[7]  Emilio Frazzoli,et al.  Real-Time Motion Planning for Agile Autonomous Vehicles , 2000 .

[8]  Paul F. M. J. Verschure,et al.  A fly-locust based neuronal control system applied to an unmanned aerial vehicle: the invertebrate neuronal principles for course stabilization, altitude control and collision avoidance , 2007, Int. J. Robotics Res..

[9]  E. Feron,et al.  Real-time motion planning for agile autonomous vehicles , 2000, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[10]  Efstathios Bakolas,et al.  Multiresolution Path Planning Via Sector Decompositions Compatible to On-Board Sensor Data , 2008 .

[11]  Martin Herman,et al.  Real-time single-workstation obstacle avoidance using only wide-field flow divergence , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[12]  Timothy W. McLain,et al.  Autonomous Vehicle Technologies for Small Fixed-Wing UAVs , 2005, J. Aerosp. Comput. Inf. Commun..

[13]  Jean-Claude Latombe,et al.  Robot Motion Planning: A Distributed Representation Approach , 1991, Int. J. Robotics Res..

[14]  S. Shankar Sastry,et al.  Multiple view motion estimation and control for landing an unmanned aerial vehicle , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[15]  Randy A. Freeman,et al.  Multi-Agent Coordination by Decentralized Estimation and Control , 2008, IEEE Transactions on Automatic Control.

[16]  Richard M. Stanley Optimal Estimation With an Introduction to Stochastic Control , 1988 .

[17]  Juan D. Tardós,et al.  Data association in stochastic mapping using the joint compatibility test , 2001, IEEE Trans. Robotics Autom..

[18]  F. Rind,et al.  Neural network based on the input organization of an identified neuron signaling impending collision. , 1996, Journal of neurophysiology.

[19]  Giulio Sandini,et al.  Uncalibrated obstacle detection using normal flow , 2005, Machine Vision and Applications.

[20]  Yiannis Aloimonos,et al.  Obstacle Avoidance Using Flow Field Divergence , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Andrew Blake,et al.  Image Divergence and Deformation from Closed Curves , 1997, Int. J. Robotics Res..

[22]  Shigang Yue,et al.  Collision detection in complex dynamic scenes using an LGMD-based visual neural network with feature enhancement , 2006, IEEE Transactions on Neural Networks.

[23]  Anawat Pongpunwattana,et al.  Real-Time Planning for Multiple Autonomous Vehicles in Dynamic Uncertain Environments , 2004, J. Aerosp. Comput. Inf. Commun..

[24]  Lyle Graham How not to get caught , 2003, Nature Neuroscience.

[25]  Jean-Claude Latombe,et al.  Numerical potential field techniques for robot path planning , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[26]  G. Laurent,et al.  Elementary Computation of Object Approach by a Wide-Field Visual Neuron , 1995, Science.

[27]  Rama Chellappa,et al.  Image gradient evolution-a visual cue for collision avoidance , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[28]  Gaurav S. Sukhatme,et al.  Vision-based autonomous landing of an unmanned aerial vehicle , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[29]  Camillo J. Taylor,et al.  Expansion segmentation for visual collision detection and estimation , 2009, 2009 IEEE International Conference on Robotics and Automation.

[30]  John Oliensis,et al.  A Critique of Structure-from-Motion Algorithms , 2000, Comput. Vis. Image Underst..

[31]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[32]  P. Tsiotras,et al.  Multiresolution path planning with wavelets: A local replanning approach , 2008, 2008 American Control Conference.

[33]  Eric N. Johnson,et al.  Vision-based Approach to Obstacle Avoidance , 2005 .

[34]  Tomás Lozano-Pérez,et al.  Automatic Planning of Manipulator Transfer Movements , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[35]  Jeffrey Byrne,et al.  Vision-based reactive multiple obstacle avoidance for micro air vehicles , 2009, 2009 American Control Conference.

[36]  M. Egelhaaf,et al.  Vision in flying insects , 2002, Current Opinion in Neurobiology.

[37]  Stephen J. Maybank,et al.  Apparent area of a rigid moving body , 1987, Image Vis. Comput..

[38]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[39]  Rodney A. Brooks,et al.  Visually-guided obstacle avoidance in unstructured environments , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[40]  Nicola Ancona,et al.  Optical flow from 1-D correlation: Application to a simple time-to-crash detector , 2005, International Journal of Computer Vision.

[41]  T. Kanade,et al.  Real-time and 3D vision for autonomous small and micro air vehicles , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[42]  Brandon R. Call,et al.  Obstacle Avoidance for Small Unmanned Air Vehicles , 2006 .

[43]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[44]  Efstathios Bakolas,et al.  A hierarchical on-line path planning scheme using wavelets , 2007, 2007 European Control Conference (ECC).

[45]  Tetsuya Yagi,et al.  Real-time robot vision for collision avoidance inspired by neuronal circuits of insects , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[46]  A. Verri,et al.  Green Theorems and Qualitative Properties of the Optical Flow , 1991 .

[47]  S. LaValle,et al.  Using Randomization to Find and Optimize Feasible Trajectories for Nonlinear Systems , 2000 .

[48]  Y. Bar-Shalom Tracking and data association , 1988 .

[49]  Jean-Claude Latombe,et al.  New heuristic algorithms for efficient hierarchical path planning , 1991, IEEE Trans. Robotics Autom..

[50]  Nancy M. Amato,et al.  A randomized roadmap method for path and manipulation planning , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[51]  Lydia E. Kavraki,et al.  Analysis of probabilistic roadmaps for path planning , 1996, Proceedings of IEEE International Conference on Robotics and Automation.