Functional properties of stellate cells in medial entorhinal cortex layer II

Layer II of the medial entorhinal cortex (MEC) contains two principal cell types: pyramidal cells and stellate cells. Accumulating evidence suggests that these two cell types have distinct molecular profiles, physiological properties, and connectivity. The observations hint at a fundamental functional difference between the two cell populations but conclusions have been mixed. Here, we used a tTA-based transgenic mouse line to drive expression of ArchT, an optogenetic silencer, specifically in stellate cells. We were able to optogenetically identify stellate cells and characterize their firing properties in freely moving mice. The stellate cell population included cells from a range of functional cell classes. Roughly one in four of the tagged cells were grid cells, suggesting that stellate cells contribute not only to path-integration-based representation of self-location but also have other functions. The data support observations suggesting that grid cells are not the sole determinant of place cell firing.

[1]  Menno Witter Entorhinal cortex , 2011, Scholarpedia.

[2]  Edvard I Moser,et al.  Development of the Spatial Representation System in the Rat , 2010, Science.

[3]  J. O’Keefe,et al.  Geometric determinants of the place fields of hippocampal neurons , 1996, Nature.

[4]  Thomas J. Wills,et al.  Development of the Hippocampal Cognitive Map in Preweanling Rats , 2010, Science.

[5]  L F Abbott,et al.  Modular Realignment of Entorhinal Grid Cell Activity as a Basis for Hippocampal Remapping , 2011, The Journal of Neuroscience.

[6]  Kenneth D. Harris,et al.  High-Dimensional Cluster Analysis with the Masked EM Algorithm , 2013, Neural Computation.

[7]  Yasser Roudi,et al.  Ten Years of Grid Cells. , 2016, Annual review of neuroscience.

[8]  Bruce L. McNaughton,et al.  Path integration and the neural basis of the 'cognitive map' , 2006, Nature Reviews Neuroscience.

[9]  Philipp Berens,et al.  CircStat: AMATLABToolbox for Circular Statistics , 2009, Journal of Statistical Software.

[10]  M. Moser,et al.  Representation of Geometric Borders in the Developing Rat , 2014, Neuron.

[11]  Neil Burgess,et al.  Predictions derived from modelling the hippocampal role in navigation , 2000, Biological Cybernetics.

[12]  Nils Z. Borgesius,et al.  A Novel Mechanism for the Grid-to-Place Cell Transformation Revealed by Transgenic Depolarization of Medial Entorhinal Cortex Layer II , 2017, Neuron.

[13]  Susana Q. Lima,et al.  PINP: A New Method of Tagging Neuronal Populations for Identification during In Vivo Electrophysiological Recording , 2009, PloS one.

[14]  M. Witter,et al.  Cellular properties of principal neurons in the rat entorhinal cortex. I. The lateral entorhinal cortex , 2012, Hippocampus.

[15]  Francesco Savelli,et al.  Hebbian analysis of the transformation of medial entorhinal grid-cell inputs to hippocampal place fields. , 2010, Journal of neurophysiology.

[16]  M. Brecht,et al.  Pyramidal and Stellate Cell Specificity of Grid and Border Representations in Layer 2 of Medial Entorhinal Cortex , 2014, Neuron.

[17]  J. Knierim,et al.  Major Dissociation Between Medial and Lateral Entorhinal Input to Dorsal Hippocampus , 2005, Science.

[18]  G. Einevoll,et al.  From grid cells to place cells: A mathematical model , 2006, Hippocampus.

[19]  Lisa M. Giocomo,et al.  Temporal Frequency of Subthreshold Oscillations Scales with Entorhinal Grid Cell Field Spacing , 2007, Science.

[20]  M. Brecht,et al.  Grid-Layout and Theta-Modulation of Layer 2 Pyramidal Neurons in Medial Entorhinal Cortex , 2014, Science.

[21]  Ashley N. Linder,et al.  The Spatial Periodicity of Grid Cells Is Not Sustained During Reduced Theta Oscillations , 2011, Science.

[22]  Michael E. Hasselmo,et al.  Grid cell firing properties vary as a function of theta phase locking preferences in the rat medial entorhinal cortex , 2014, Front. Syst. Neurosci..

[23]  Mark P. Brandon,et al.  Reduction of Theta Rhythm Dissociates Grid Cell Spatial Periodicity from Directional Tuning , 2011, Science.

[24]  Edvard I. Moser,et al.  Speed cells in the medial entorhinal cortex , 2015, Nature.

[25]  R. Llinás,et al.  Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II , 1989, Nature.

[26]  James G. Heys,et al.  The Functional Micro-organization of Grid Cells Revealed by Cellular-Resolution Imaging , 2014, Neuron.

[27]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[28]  Hannah Monyer,et al.  Local and Distant Input Controlling Excitation in Layer II of the Medial Entorhinal Cortex , 2016, Neuron.

[29]  I. Soltesz,et al.  Target-selective GABAergic control of entorhinal cortex output , 2010, Nature Neuroscience.

[30]  Benjamin A. Dunn,et al.  Recurrent inhibitory circuitry as a mechanism for grid formation , 2013, Nature Neuroscience.

[31]  M. Moser,et al.  Parvalbumin and Somatostatin Interneurons Control Different Space-Coding Networks in the Medial Entorhinal Cortex , 2017, Cell.

[32]  A. Guidotti,et al.  Reelin is preferentially expressed in neurons synthesizing gamma-aminobutyric acid in cortex and hippocampus of adult rats. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[33]  C. Kentros,et al.  Perceptual Gap Detection Is Mediated by Gap Termination Responses in Auditory Cortex , 2014, Current Biology.

[34]  Kenneth D Harris,et al.  Spike sorting for large, dense electrode arrays , 2015, Nature Neuroscience.

[35]  Nathan C. Klapoetke,et al.  A High-Light Sensitivity Optical Neural Silencer: Development and Application to Optogenetic Control of Non-Human Primate Cortex , 2010, Front. Syst. Neurosci..

[36]  Christopher F. Shay,et al.  Rebound spiking in layer II medial entorhinal cortex stellate cells: Possible mechanism of grid cell function , 2016, Neurobiology of Learning and Memory.

[37]  S. Tonegawa,et al.  Island Cells Control Temporal Association Memory , 2014, Science.

[38]  May-Britt Moser,et al.  Path integration in place cells of developing rats , 2018, Proceedings of the National Academy of Sciences.

[39]  Edvard I. Moser,et al.  Grid cells , 2007, Scholarpedia.

[40]  B L McNaughton,et al.  Grids from bands, or bands from grids? An examination of the effects of single unit contamination on grid cell firing fields. , 2016, Journal of neurophysiology.

[41]  Patrick Latuske,et al.  Interspike Intervals Reveal Functionally Distinct Cell Populations in the Medial Entorhinal Cortex , 2015, The Journal of Neuroscience.

[42]  Edvard I. Moser,et al.  Object-vector coding in the medial entorhinal cortex , 2018, bioRxiv.

[43]  Torkel Hafting,et al.  Conjunctive Representation of Position, Direction, and Velocity in Entorhinal Cortex , 2006, Science.

[44]  T. Hafting,et al.  Hippocampus-independent phase precession in entorhinal grid cells , 2008, Nature.

[45]  Edvard I. Moser,et al.  Shearing-induced asymmetry in entorhinal grid cells , 2015, Nature.

[46]  Marco Idiart,et al.  The single place fields of CA3 cells: A two‐stage transformation from grid cells , 2012, Hippocampus.

[47]  M. Moser,et al.  Representation of Geometric Borders in the Entorhinal Cortex , 2008, Science.

[48]  J. O’Keefe,et al.  Modeling place fields in terms of the cortical inputs to the hippocampus , 2000, Hippocampus.

[49]  D. Tank,et al.  Membrane potential dynamics of grid cells , 2013, Nature.

[50]  May-Britt Moser,et al.  The entorhinal grid map is discretized , 2012, Nature.

[51]  Yangfan Peng,et al.  Excitatory Microcircuits within Superficial Layers of the Medial Entorhinal Cortex. , 2017, Cell reports.

[52]  Masahiro Yasuda,et al.  CaMKII Activation in the Entorhinal Cortex Disrupts Previously Encoded Spatial Memory , 2006, Neuron.

[53]  B. McNaughton,et al.  Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex , 1995, Journal of Neuroscience Methods.

[54]  M. Häusser,et al.  Cellular mechanisms of spatial navigation in the medial entorhinal cortex , 2013, Nature Neuroscience.

[55]  M. Brecht,et al.  Microcircuits of Functionally Identified Neurons in the Rat Medial Entorhinal Cortex , 2011, Neuron.

[56]  M. Hasselmo,et al.  Distinct Functional Groups Emerge from the Intrinsic Properties of Molecularly Identified Entorhinal Interneurons and Principal Cells , 2016, Cerebral cortex.

[57]  B. McNaughton,et al.  Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences , 1996, Hippocampus.

[58]  Johannes J. Letzkus,et al.  Amygdala interneuron subtypes control fear learning through disinhibition , 2014, Nature.

[59]  M. Hasselmo,et al.  Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. , 2000, Journal of neurophysiology.

[60]  Hannah Monyer,et al.  Parvalbumin interneurons provide grid cell–driven recurrent inhibition in the medial entorhinal cortex , 2014, Nature Neuroscience.

[61]  Menno P. Witter,et al.  Transgenically Targeted Rabies Virus Demonstrates a Major Monosynaptic Projection from Hippocampal Area CA2 to Medial Entorhinal Layer II Neurons , 2013, The Journal of Neuroscience.

[62]  Thomas J. Wills,et al.  A Developmental Switch in Place Cell Accuracy Coincides with Grid Cell Maturation , 2015, Neuron.

[63]  Lacey J. Kitch,et al.  Distinct speed dependence of entorhinal island and ocean cells, including respective grid cells , 2015, Proceedings of the National Academy of Sciences.

[64]  Michael A. Henninger,et al.  High-Performance Genetically Targetable Optical Neural Silencing via Light-Driven Proton Pumps , 2010 .

[65]  Matthew F. Nolan,et al.  Stellate Cells in the Medial Entorhinal Cortex Are Required for Spatial Learning , 2018, Cell reports.

[66]  Jill K. Leutgeb,et al.  Grid and Nongrid Cells in Medial Entorhinal Cortex Represent Spatial Location and Environmental Features with Complementary Coding Schemes , 2017, Neuron.

[67]  Charlotte N. Boccara,et al.  Grid cells in pre- and parasubiculum , 2010, Nature Neuroscience.

[68]  J. Csicsvari,et al.  Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. , 2000, Journal of neurophysiology.

[69]  M. Moser,et al.  Optogenetic Dissection of Entorhinal-Hippocampal Functional Connectivity , 2013, Science.

[70]  Michael E Hasselmo,et al.  Knock-Out of HCN1 Subunit Flattens Dorsal–Ventral Frequency Gradient of Medial Entorhinal Neurons in Adult Mice , 2009, The Journal of Neuroscience.

[71]  Simon M Stringer,et al.  Entorhinal cortex grid cells can map to hippocampal place cells by competitive learning , 2006, Network.