Reconfiguring Massive Particle Swarms with Limited, Global Control

We investigate algorithmic control of a large swarm of mobile particles (such as robots, sensors, or building material) that move in a 2D workspace using a global input signal such as gravity or a magnetic field. Upon activation of the field, each particle moves maximally in the same direction, until it hits a stationary obstacle or another stationary particle. In an open workspace, this system model is of limited use because it has only two controllable degrees of freedom—all particles receive the same inputs and move uniformly. We show that adding a maze of obstacles to the environment can make the system drastically more complex but also more useful. The resulting model matches ThinkFun’s Tilt puzzle.

[1]  Bruce Randall Donald,et al.  Planning and control for microassembly of structures composed of stress-engineered MEMS microrobots , 2013, Int. J. Robotics Res..

[2]  Erik D. Demaine,et al.  Games of No Chance 3: Playing games with algorithms: Algorithmic combinatorial game theory , 2009 .

[3]  John F. Canny,et al.  Part pose statistics: estimators and experiments , 1999, IEEE Trans. Robotics Autom..

[4]  Gordon T. Wilfong,et al.  Motion planning in the presence of movable obstacles , 1988, SCG '88.

[5]  Timothy Bretl,et al.  Approximate Steering of a Unicycle Under Bounded Model Perturbation Using Ensemble Control , 2012, IEEE Transactions on Robotics.

[6]  Markus Holzer,et al.  Assembling molecules in ATOMIX is hard , 2004, Theor. Comput. Sci..

[7]  Pierre E. Dupont,et al.  Motion planning for multiple millimeter-scale magnetic capsules in a fluid environment , 2012, 2012 IEEE International Conference on Robotics and Automation.

[8]  Matthew T. Mason,et al.  An exploration of sensorless manipulation , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  Erik D. Demaine,et al.  PushPush and Push-1 are NP-hard in 2D , 2000, CCCG.

[11]  Sándor P. Fekete,et al.  Neighborhood-Based Topology Recognition in Sensor Networks , 2004, ALGOSENSORS.

[12]  Sándor P. Fekete,et al.  Topology and Routing in Sensor Networks , 2007, ALGOSENSORS.

[13]  Chris Hanson,et al.  Amorphous computing , 2000, Commun. ACM.

[14]  Kevin M. Lynch,et al.  An example of parts handling and self-assembly using stable limit sets , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Sándor P. Fekete,et al.  Geometry-based reasoning for a large sensor network , 2006, SCG '06.

[16]  Jack Botermans,et al.  Creative Puzzles of the World , 1978 .

[17]  Tom Kamphans,et al.  Birgit Engels 1 Tom Kamphans 2 On the Complexity of Randolph ’ s Robot Game Technical Report 005 December , 2006 .

[18]  Randy H. Katz,et al.  Emerging challenges: Mobile networking for “Smart Dust” , 2000, Journal of Communications and Networks.

[19]  Li Zhang,et al.  Bio-inspired magnetic swimming microrobots for biomedical applications. , 2013, Nanoscale.

[20]  Radhika Nagpal,et al.  Kilobot: A low cost scalable robot system for collective behaviors , 2012, 2012 IEEE International Conference on Robotics and Automation.

[21]  Metin Sitti,et al.  Control methodologies for a heterogeneous group of untethered magnetic micro-robots , 2011, Int. J. Robotics Res..

[22]  Uri Zwick,et al.  SOKOBAN and other motion planning problems , 1999, Comput. Geom..

[23]  Kenneth Y. Goldberg,et al.  Orienting polygonal parts without sensors , 1993, Algorithmica.

[24]  Sándor P. Fekete,et al.  Deterministic boundary recognition and topology extraction for large sensor networks , 2005, SODA '06.

[25]  Aaron Becker,et al.  Feedback control of many magnetized: Tetrahymena pyriformis cells by exploiting phase inhomogeneity , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[26]  Matthew T. Mason,et al.  Using Partial Sensor Information to Orient Parts , 1999, Int. J. Robotics Res..

[27]  Sylvain Martel,et al.  Adapting the clinical MRI software environment for real‐time navigation of an endovascular untethered ferromagnetic bead for future endovascular interventions , 2008, Magnetic resonance in medicine.

[28]  Leon Abelmann,et al.  Control of magnetotactic bacterium in a micro-fabricated maze , 2013, 2013 IEEE International Conference on Robotics and Automation.

[29]  James M Tour,et al.  Toward a light-driven motorized nanocar: synthesis and initial imaging of single molecules. , 2012, ACS nano.

[30]  Kevin M. Lynch,et al.  Stable limit sets in a dynamic parts feeder , 2002, IEEE Trans. Robotics Autom..

[31]  Kenneth Y. Goldberg,et al.  Blades: a new class of geometric primitives for feeding 3D parts on vibratory tracks , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[32]  Mark Moll,et al.  Manipulation of Pose Distributions , 2002, Int. J. Robotics Res..

[33]  Dominic R. Frutiger,et al.  Magmites - wireless resonant magnetic microrobots , 2008, 2008 IEEE International Conference on Robotics and Automation.

[34]  Ken Goldberg,et al.  Blades for feeding 3D parts on vibratory tracks , 2006 .

[35]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[36]  Joel W. Burdick,et al.  Feedback Control Methods for Distributed Manipulation Systems that Involve Mechanical Contacts , 2004, Int. J. Robotics Res..

[37]  Paul Umbanhowar,et al.  Sliding manipulation of rigid bodies on a controlled 6-DoF plate , 2012, Int. J. Robotics Res..

[38]  Richard J. Nowakowski,et al.  Games of No Chance 3: Surveys , 1998 .

[39]  Mark H. Overmars,et al.  Geometry and Part Feeding , 2000, Sensor Based Intelligent Robots.

[40]  Erik D. Demaine,et al.  Playing Games with Algorithms: Algorithmic Combinatorial Game Theory , 2001, MFCS.

[41]  Timothy Bretl,et al.  Feedback control of many differential-drive robots with uniform control inputs , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[42]  Thomas H. Vose,et al.  Friction-Induced Velocity Fields for Point Parts Sliding on a Rigid Oscillated Plate , 2009, Int. J. Robotics Res..

[43]  Erik D. Demaine,et al.  PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation , 2002, Theor. Comput. Sci..

[44]  Frank Thomson Leighton Introduction to parallel algorithms and architectures: arrays , 1992 .

[45]  Kevin M. Lynch,et al.  Parts Feeding on a Conveyor with a One Joint Robot , 2000, Algorithmica.

[46]  J. Nicolas,et al.  Maximal product of primes whose sum is bounded , 2012, 1207.0603.

[47]  Michael Ho Motion Planning amidst Movable Square Blocks: Push-* Is Np-hard , 2000 .

[48]  Michael Rubenstein,et al.  Massive uniform manipulation: Controlling large populations of simple robots with a common input signal , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[49]  Gregory D. Hager,et al.  Sensor Based Intelligent Robots , 1999, Lecture Notes in Computer Science.

[50]  A. Agung Julius,et al.  Motion control of magnetized Tetrahymena pyriformis cells by a magnetic field with Model Predictive Control , 2013, Int. J. Robotics Res..