Visual Orientation and Directional Selectivity through Thalamic Synchrony

Thalamic neurons respond to visual scenes by generating synchronous spike trains on the timescale of 10–20 ms that are very effective at driving cortical targets. Here we demonstrate that this synchronous activity contains unexpectedly rich information about fundamental properties of visual stimuli. We report that the occurrence of synchronous firing of cat thalamic cells with highly overlapping receptive fields is strongly sensitive to the orientation and the direction of motion of the visual stimulus. We show that this stimulus selectivity is robust, remaining relatively unchanged under different contrasts and temporal frequencies (stimulus velocities). A computational analysis based on an integrate-and-fire model of the direct thalamic input to a layer 4 cortical cell reveals a strong correlation between the degree of thalamic synchrony and the nonlinear relationship between cortical membrane potential and the resultant firing rate. Together, these findings suggest a novel population code in the synchronous firing of neurons in the early visual pathway that could serve as the substrate for establishing cortical representations of the visual scene.

[1]  R. Reid,et al.  Synchronous activity in the visual system. , 1999, Annual review of physiology.

[2]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  H. Swadlow,et al.  The impact of 'bursting' thalamic impulses at a neocortical synapse , 2001, Nature Neuroscience.

[4]  J. Alonso,et al.  Population receptive fields of ON and OFF thalamic inputs to an orientation column in visual cortex , 2011, Nature Neuroscience.

[5]  J. P. Jones,et al.  The two-dimensional spatial structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[6]  Robert A. Frazor,et al.  Independence of luminance and contrast in natural scenes and in the early visual system , 2005, Nature Neuroscience.

[7]  K. Miller,et al.  LGN input to simple cells and contrast-invariant orientation tuning: an analysis. , 2002, Journal of neurophysiology.

[8]  R. Freeman,et al.  Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast , 2004, Experimental Brain Research.

[9]  C. W. G Clifford,et al.  Fundamental mechanisms of visual motion detection: models, cells and functions , 2002, Progress in Neurobiology.

[10]  P. H. Schiller Central connections of the retinal ON and OFF pathways , 1982, Nature.

[11]  Lawrence C. Sincich,et al.  Preserving Information in Neural Transmission , 2009, The Journal of Neuroscience.

[12]  Robert C. Liu,et al.  Variability and information in a neural code of the cat lateral geniculate nucleus. , 2001, Journal of neurophysiology.

[13]  Chun-I Yeh,et al.  Receptive field size and response latency are correlated within the cat visual thalamus. , 2005, Journal of neurophysiology.

[14]  I. Ohzawa,et al.  Linear and nonlinear contributions to orientation tuning of simple cells in the cat's striate cortex , 1999, Visual Neuroscience.

[15]  A. Peters,et al.  Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. , 1993, Cerebral cortex.

[16]  Garrett B. Stanley,et al.  Frontiers in Systems Neuroscience Systems Neuroscience 2 Materials and Methods 2.1 Neural Recording , 2022 .

[17]  R. Freeman,et al.  Development of orientation tuning in simple cells of primary visual cortex. , 2012, Journal of Neurophysiology.

[18]  Simona Temereanca,et al.  Rapid Changes in Thalamic Firing Synchrony during Repetitive Whisker Stimulation , 2008, The Journal of Neuroscience.

[19]  A. Sillito,et al.  Corticothalamic feedback enhances stimulus response precision in the visual system , 2007, Proceedings of the National Academy of Sciences.

[20]  Andrew W. Fitzgibbon,et al.  Direct Least Square Fitting of Ellipses , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[22]  R. Freeman,et al.  The Derivation of Direction Selectivity in the Striate Cortex , 2004, The Journal of Neuroscience.

[23]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[24]  Chun-I Yeh,et al.  Temporal precision in the neural code and the timescales of natural vision , 2007, Nature.

[25]  Garrett B Stanley,et al.  Timing Precision in Population Coding of Natural Scenes in the Early Visual System , 2008, PLoS biology.

[26]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[27]  Xin Wang,et al.  Recoding of Sensory Information across the Retinothalamic Synapse , 2010, The Journal of Neuroscience.

[28]  Wulfram Gerstner,et al.  Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. , 2004, Journal of neurophysiology.

[29]  L. Palmer,et al.  Contribution of linear spatiotemporal receptive field structure to velocity selectivity of simple cells in area 17 of cat , 1989, Vision Research.

[30]  Garrett B. Stanley,et al.  Thalamic Synchrony and the Adaptive Gating of Information Flow to Cortex , 2010, Nature Neuroscience.

[31]  A. Zador,et al.  Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex , 2003, Nature.

[32]  Matteo Carandini,et al.  Somatosensory Integration Controlled by Dynamic Thalamocortical Feed-Forward Inhibition , 2005, Neuron.

[33]  R. Reid,et al.  Temporal Coding of Visual Information in the Thalamus , 2000, The Journal of Neuroscience.

[34]  H Sherk,et al.  Receptive field properties in the cat's area 17 in the absence of on- center geniculate input , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  Randy M. Bruno,et al.  Effects and Mechanisms of Wakefulness on Local Cortical Networks , 2011, Neuron.

[36]  Stephane A. Roy,et al.  Coincidence Detection or Temporal Integration? What the Neurons in Somatosensory Cortex Are Doing , 2001, The Journal of Neuroscience.

[37]  R. Shapley,et al.  Linear mechanisms of directional selectivity in simple cells of cat striate cortex. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[38]  J. Alonso,et al.  Adaptation to Stimulus Contrast and Correlations during Natural Visual Stimulation , 2007, Neuron.

[39]  R. Shapley,et al.  New perspectives on the mechanisms for orientation selectivity , 1997, Current Opinion in Neurobiology.

[40]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[41]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and spatial summation. , 1993, Journal of neurophysiology.

[42]  A. L. Humphrey,et al.  Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. , 1990, Journal of neurophysiology.

[43]  Romesh D Kumbhani,et al.  Precision, reliability, and information-theoretic analysis of visual thalamocortical neurons. , 2007, Journal of neurophysiology.

[44]  S. Sherman,et al.  Synaptic circuits involving an individual retinogeniculate axon in the cat , 1987, The Journal of comparative neurology.

[45]  R. Reid,et al.  Synaptic Interactions between Thalamic Inputs to Simple Cells in Cat Visual Cortex , 2000, The Journal of Neuroscience.

[46]  Eero P. Simoncelli,et al.  Maximum Likelihood Estimation of a Stochastic Integrate-and-Fire Neural Encoding Model , 2004, Neural Computation.

[47]  Nicholas J. Priebe,et al.  Direction Selectivity of Excitation and Inhibition in Simple Cells of the Cat Primary Visual Cortex , 2005, Neuron.

[48]  L. Paninski,et al.  Temporal Precision in the Visual Pathway through the Interplay of Excitation and Stimulus- Driven Suppression , 2022 .

[49]  Matteo Carandini,et al.  Melting the Iceberg: Contrast Invariance in Visual Cortex , 2007, Neuron.

[50]  K. Sanderson Visual field projection columns and magnification factors in the lateral geniculate nucleus of the cat , 2004, Experimental Brain Research.

[51]  D. Whitteridge,et al.  Innervation of cat visual areas 17 and 18 by physiologically identified X‐ and Y‐ type thalamic afferents. II. Identification of postsynaptic targets by GABA immunocytochemistry and Golgi impregnation , 1985, The Journal of comparative neurology.

[52]  R. Desimone,et al.  Gamma-band synchronization in visual cortex predicts speed of change detection , 2006, Nature.

[53]  Jessica A. Cardin,et al.  Stimulus Feature Selectivity in Excitatory and Inhibitory Neurons in Primary Visual Cortex , 2007, The Journal of Neuroscience.

[54]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Nicholas J. Priebe,et al.  Inhibition, Spike Threshold, and Stimulus Selectivity in Primary Visual Cortex , 2008, Neuron.

[56]  Randy M Bruno,et al.  Feedforward Mechanisms of Excitatory and Inhibitory Cortical Receptive Fields , 2002, The Journal of Neuroscience.

[57]  R. Shapley,et al.  Orientation Selectivity in Macaque V1: Diversity and Laminar Dependence , 2002, The Journal of Neuroscience.

[58]  R. Reid,et al.  Precisely correlated firing in cells of the lateral geniculate nucleus , 1996, Nature.

[59]  Michael J. Black,et al.  On the Spatial Statistics of Optical Flow , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[60]  Nicholas J. Priebe,et al.  The contribution of spike threshold to the dichotomy of cortical simple and complex cells , 2004, Nature Neuroscience.

[61]  I. Ohzawa,et al.  The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior. , 1987, Journal of neurophysiology.

[62]  Jessica A. Cardin,et al.  Cellular Mechanisms of Temporal Sensitivity in Visual Cortex Neurons , 2010, The Journal of Neuroscience.

[63]  W. Reichardt Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems , 1957 .

[64]  Robert Shapley,et al.  The dynamics of visual responses in the primary visual cortex. , 2007, Progress in brain research.

[65]  D. Contreras,et al.  Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex , 2005, Nature Neuroscience.

[66]  T. Sejnowski,et al.  Reliability of spike timing in neocortical neurons. , 1995, Science.

[67]  B. B. Lee,et al.  A comparison of visual responses of cat lateral geniculate nucleus neurones with those of ganglion cells afferent to them. , 1985, The Journal of physiology.

[68]  Lee M. Miller,et al.  Feature Selectivity and Interneuronal Cooperation in the Thalamocortical System , 2001, The Journal of Neuroscience.

[69]  Uri T Eden,et al.  A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. , 2005, Journal of neurophysiology.

[70]  R. Shapley,et al.  Dynamics of Orientation Selectivity in the Primary Visual Cortex and the Importance of Cortical Inhibition , 2003, Neuron.

[71]  B. Sakmann,et al.  Cortex Is Driven by Weak but Synchronously Active Thalamocortical Synapses , 2006, Science.

[72]  Jessica A. Cardin,et al.  Cellular Mechanisms Underlying Stimulus-Dependent Gain Modulation in Primary Visual Cortex Neurons In Vivo , 2008, Neuron.

[73]  B. Payne,et al.  Direction selectivity and physiological compensation in the superior colliculus following removal of areas 17 and 18 , 1993, Visual Neuroscience.

[74]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[75]  J. Alonso,et al.  Functional connectivity between simple cells and complex cells in cat striate cortex , 1998, Nature Neuroscience.

[76]  Eero P. Simoncelli,et al.  Spatio-temporal correlations and visual signalling in a complete neuronal population , 2008, Nature.

[77]  R. Reid,et al.  Rules of Connectivity between Geniculate Cells and Simple Cells in Cat Primary Visual Cortex , 2001, The Journal of Neuroscience.

[78]  T. Weyand,et al.  Retinogeniculate transmission in wakefulness. , 2007, Journal of neurophysiology.

[79]  Alex M. Andrew,et al.  Spiking Neuron Models: Single Neurons, Populations, Plasticity , 2003 .

[80]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[81]  D. Whitteridge,et al.  Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. , 1984, The Journal of physiology.

[82]  Chun-I Yeh,et al.  Functional consequences of neuronal divergence within the retinogeniculate pathway. , 2009, Journal of neurophysiology.

[83]  K. Miller,et al.  Neural noise can explain expansive, power-law nonlinearities in neural response functions. , 2002, Journal of neurophysiology.

[84]  Guillermo Sapiro,et al.  A subspace reverse-correlation technique for the study of visual neurons , 1997, Vision Research.

[85]  D N Mastronarde,et al.  Nonlagged relay cells and interneurons in the cat lateral geniculate nucleus: Receptive-field properties and retinal inputs , 1992, Visual Neuroscience.

[86]  G B Stanley,et al.  Reconstruction of Natural Scenes from Ensemble Responses in the Lateral Geniculate Nucleus , 1999, The Journal of Neuroscience.

[87]  T. Sejnowski,et al.  Synchrony of Thalamocortical Inputs Maximizes Cortical Reliability , 2010, Science.

[88]  Harvey A Swadlow,et al.  Thalamocortical control of feed-forward inhibition in awake somatosensory 'barrel' cortex. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[89]  C. Gray,et al.  Adaptive Coincidence Detection and Dynamic Gain Control in Visual Cortical Neurons In Vivo , 2003, Neuron.

[90]  D. Ferster,et al.  The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. , 2000, Science.

[91]  Lyle J. Graham,et al.  Orientation and Direction Selectivity of Synaptic Inputs in Visual Cortical Neurons A Diversity of Combinations Produces Spike Tuning , 2003, Neuron.