Behavior-Based Coordination in Multi-Robot Systems

The successful deployment of a multi-robot system (MRS) requires an effective method of coordination to mediate the interactions among the robots and between the robots and the task environment in order for a given system-level task to be performed. The design of coordination mechanisms has received increasing attention in recent years and has included investigations into a wide variety of coordination mechanisms. A popular and successful framework for the control of robots in coordinated MRS is behavior-based control (1,2). Behavior-based control is a methodology in which robots are controlled through the principled integration of a set of interacting behaviors (e.g., wall following, collision avoidance, landmark recognition, etc.) in order to achieve desired system-level behavior. This chapter will describe, through explanation, discussion of demonstrated simulated and physical mobile robots, and formal design and analysis, the range and capabilities of behavior-based control applied to multi-robot coordination.

[1]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[2]  Leslie Pack Kaelbling,et al.  A Situated View of Representation and Control , 1995, Artif. Intell..

[3]  Rodney A. Brooks,et al.  Learning to Coordinate Behaviors , 1990, AAAI.

[4]  Kristina Lerman,et al.  Macroscopic analysis of adaptive task allocation in robots , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[5]  Maja J. Mataric,et al.  Adaptive division of labor in large-scale minimalist multi-robot systems , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[6]  Pattie Maes,et al.  The Dynamics of Action Selection , 1989, IJCAI.

[7]  Paolo Pirjanian Multiple objective behavior-based control , 2000, Robotics Auton. Syst..

[8]  Maja J. Mataric,et al.  Issues and approaches in the design of collective autonomous agents , 1995, Robotics Auton. Syst..

[9]  Paolo Pirjanian,et al.  Behavior Coordination Mechanisms - State-of-the-art , 1999 .

[10]  Alcherio Martinoli,et al.  Modeling Swarm Robotic Systems , 2002, ISER.

[11]  Maja J. Mataric,et al.  Integration of representation into goal-driven behavior-based robots , 1992, IEEE Trans. Robotics Autom..

[12]  R. A. Brooks,et al.  Intelligence without Representation , 1991, Artif. Intell..

[13]  Maja J. Mataric,et al.  Synthesis and Analysis of Non-Reactive Controllers for Multi-Robot Sequential Task Domains , 2004, ISER.

[14]  Philip E. Agre,et al.  Computational Research on Interaction and Agency , 1995, Artif. Intell..

[15]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[16]  Lynne E. Parker,et al.  Behavior-Based Cooperative Robotics Applied to Multi-Target Observation , 1996, Intelligent Robots.

[17]  Michael Jenkin,et al.  A Taxonomy of Multirobot Systems , 2003 .

[18]  Maja J. Mataric,et al.  Principled Communication for Dynamic Multi-robot Task Allocation , 2000, ISER.

[19]  David W. Payton,et al.  Do whatever works: A robust approach to fault-tolerant autonomous control , 2004, Applied Intelligence.

[20]  Maja J. Mataric,et al.  Automatic synthesis of communication-based coordinated multi-robot systems , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[21]  Gaurav S. Sukhatme,et al.  Adaptive sampling for marine microorganism monitoring , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[22]  Kurt Konolige,et al.  Centibots: Very Large Scale Distributed Robotic Teams , 2004, AAAI.

[23]  Lynne E. Parker Toward the automated synthesis of cooperative mobile robot teams , 1999, Other Conferences.

[24]  W ReynoldsCraig Flocks, herds and schools: A distributed behavioral model , 1987 .

[25]  Maja J. Mataric,et al.  Behaviour-based control: examples from navigation, learning, and group behaviour , 1997, J. Exp. Theor. Artif. Intell..

[26]  Lynne E. Parker,et al.  Robot Teams: From Diversity to Polymorphism , 2002 .

[27]  E. Gat On Three-Layer Architectures , 1997 .

[28]  Jonathan H. Connell,et al.  SSS: a hybrid architecture applied to robot navigation , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[29]  Gaurav S. Sukhatme,et al.  The SDR Experience: Experiments with a Large-Scale Heterogeneous Mobile Robot Team , 2004, ISER.

[30]  A. Ijspeert,et al.  A Macroscopic Analytical Model of Collaboration in Distributed Robotic Systems , 2002, Artificial Life.

[31]  Alcherio Martinoli,et al.  Modeling Swarm Robotic Systems: a Case Study in Collaborative Distributed Manipulation , 2004, Int. J. Robotics Res..

[32]  Kristina Lerman,et al.  Mathematical Model of Foraging in a Group of Robots: Effect of Interference , 2002, Auton. Robots.

[33]  Dieter Fox,et al.  Centibots: Very Large Scale Distributed Robotic Teams , 2004, AAAI.

[34]  A. Zhang,et al.  Variance in converging puck cluster sizes , 2002, AAMAS '02.

[35]  Hong Zhang,et al.  The use of perceptual cues in multi-robot box-pushing , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[36]  Maja J. Matarić,et al.  A General, Local Algorithm for Robot Formations , 2001 .

[37]  Maja J. Matarić,et al.  The Use of Internal State in Multi-Robot Coordination , 2004 .

[38]  Maja J. Mataric,et al.  Designing and Understanding Adaptive Group Behavior , 1995, Adapt. Behav..

[39]  Monica N. Nicolescu,et al.  Experience-based representation construction: learning from human and robot teachers , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[40]  LermanKristina,et al.  Mathematical Model of Foraging in a Group of Robots , 2002 .

[41]  Jean-Arcady Meyer,et al.  Adaptive Behavior , 2005 .

[42]  NIGEL R FRANKS,et al.  Self-organizing nest construction in ants: individual worker behaviour and the nest's dynamics , 1997, Animal Behaviour.

[43]  Bruce Randall Donald,et al.  Information Invariants for Distributed Manipulation , 1995, Int. J. Robotics Res..

[44]  Rodney A. Brooks,et al.  Asynchronous Distributed Control System For A Mobile Robot , 1987, Other Conferences.

[45]  Bruce Randall Donald,et al.  Distributed Robotic Manipulation: Experiments in Minimalism , 1995, ISER.

[46]  Andrew B. Kahng,et al.  Cooperative Mobile Robotics: Antecedents and Directions , 1997, Auton. Robots.

[47]  Dario Floreano,et al.  Patterns of Interactions in Shared Environments , 1993 .

[48]  Rodney A. Brooks,et al.  Elephants don't play chess , 1990, Robotics Auton. Syst..

[49]  Maja J. Matari,et al.  Behavior-based Control: Examples from Navigation, Learning, and Group Behavior , 1997 .

[50]  Tucker R. Balch,et al.  AuRA: principles and practice in review , 1997, J. Exp. Theor. Artif. Intell..

[51]  Bruce Randall Donald,et al.  On Information Invariants in Robotics , 1995, Artif. Intell..

[52]  Lynne E. Parker,et al.  ALLIANCE: an architecture for fault tolerant multirobot cooperation , 1998, IEEE Trans. Robotics Autom..

[53]  Maja J. Matarić,et al.  Extending Behavior-Based Systems Capabilities Using An Abstract Behavior Representation , 2000, AAAI 2000.

[54]  Vijay Kumar,et al.  Modular Specification of Hybrid Systems in CHARON , 2000, HSCC.

[55]  B. Habibi,et al.  Pengi : An Implementation of A Theory of Activity , 1998 .

[56]  Gaurav S. Sukhatme,et al.  Adaptive sampling for environmental robotics , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[57]  Chris Melhuish,et al.  Stigmergy, Self-Organization, and Sorting in Collective Robotics , 1999, Artificial Life.

[58]  Francesco Mondada,et al.  Understanding collective aggregation mechanisms: From probabilistic modelling to experiments with real robots , 1999, Robotics Auton. Syst..