Impaired Spatial Representation in CA1 after Lesion of Direct Input from Entorhinal Cortex

[1]  D. Amaral,et al.  The Hippocampal Formation , 2009 .

[2]  A. Treves,et al.  Hippocampal remapping and grid realignment in entorhinal cortex , 2007, Nature.

[3]  M. Moser,et al.  Pattern Separation in the Dentate Gyrus and CA3 of the Hippocampus , 2007, Science.

[4]  G. Einevoll,et al.  From grid cells to place cells: A mathematical model , 2006, Hippocampus.

[5]  M. Moser,et al.  Fast rate coding in hippocampal CA3 cell ensembles , 2006, Hippocampus.

[6]  Bruce L. McNaughton,et al.  Path integration and the neural basis of the 'cognitive map' , 2006, Nature Reviews Neuroscience.

[7]  H. Eichenbaum Faculty Opinions recommendation of Conjunctive representation of position, direction, and velocity in entorhinal cortex. , 2006 .

[8]  Mark C. Fuhs,et al.  A Spin Glass Model of Path Integration in Rat Medial Entorhinal Cortex , 2006, The Journal of Neuroscience.

[9]  G. Buzsáki,et al.  Temporal Encoding of Place Sequences by Hippocampal Cell Assemblies , 2006, Neuron.

[10]  Jadin C. Jackson,et al.  Quantitative measures of cluster quality for use in extracellular recordings , 2005, Neuroscience.

[11]  Adnan H. Siddiqui,et al.  CA3 axonal sprouting in kainate-induced chronic epilepsy , 2005, Brain Research.

[12]  N. Spruston,et al.  Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons , 2005, Nature Neuroscience.

[13]  May-Britt Moser,et al.  Place cells, spatial maps and the population code for memory , 2005, Current Opinion in Neurobiology.

[14]  Bruce L. McNaughton,et al.  Progressive Transformation of Hippocampal Neuronal Representations in “Morphed” Environments , 2005, Neuron.

[15]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[16]  B. McNaughton,et al.  Independent Codes for Spatial and Episodic Memory in Hippocampal Neuronal Ensembles , 2005, Science.

[17]  J. Knierim,et al.  Major Dissociation Between Medial and Lateral Entorhinal Input to Dorsal Hippocampus , 2005, Science.

[18]  D. Johnston,et al.  Seizure-Induced Plasticity of h Channels in Entorhinal Cortical Layer III Pyramidal Neurons , 2004, Neuron.

[19]  E. Schuman,et al.  Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory , 2004, Nature.

[20]  F. Dudek,et al.  Increased excitatory synaptic activity and local connectivity of hippocampal CA1 pyramidal cells in rats with kainate-induced epilepsy. , 2004, Journal of neurophysiology.

[21]  A. Treves,et al.  Distinct Ensemble Codes in Hippocampal Areas CA3 and CA1 , 2004, Science.

[22]  M. Fyhn,et al.  Spatial Representation in the Entorhinal Cortex , 2004, Science.

[23]  J. Knierim,et al.  Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3 , 2004, Nature.

[24]  J. Guzowski,et al.  Differences in Hippocampal Neuronal Population Responses to Modifications of an Environmental Context: Evidence for Distinct, Yet Complementary, Functions of CA3 and CA1 Ensembles , 2004, The Journal of Neuroscience.

[25]  T. Dugladze,et al.  Kindling alters entorhinal cortex-hippocampal interaction by increased efficacy of presynaptic GABAb autoreceptors in layer III of the entorhinal cortex , 2003, Neurobiology of Disease.

[26]  M. Quirk,et al.  Hippocampal CA3 NMDA Receptors Are Crucial for Memory Acquisition of One-Time Experience , 2003, Neuron.

[27]  Menno P. Witter,et al.  Place Cells and Place Recognition Maintained by Direct Entorhinal-Hippocampal Circuitry , 2002, Science.

[28]  M. Quirk,et al.  Requirement for Hippocampal CA3 NMDA Receptors in Associative Memory Recall , 2002, Science.

[29]  E. Schuman,et al.  Direct cortical input modulates plasticity and spiking in CA1 pyramidal neurons , 2002, Nature.

[30]  Michael E. Hasselmo,et al.  A Proposed Function for Hippocampal Theta Rhythm: Separate Phases of Encoding and Retrieval Enhance Reversal of Prior Learning , 2002, Neural Computation.

[31]  Thomas J. Wills,et al.  Long-term plasticity in hippocampal place-cell representation of environmental geometry , 2002, Nature.

[32]  M. Moser,et al.  Impaired retention of spatial memory after transection of longitudinally oriented axons of hippocampal CA3 pyramidal cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[33]  G. Buzsáki,et al.  Temporal Interaction between Single Spikes and Complex Spike Bursts in Hippocampal Pyramidal Cells , 2001, Neuron.

[34]  S. Molden,et al.  Accumulation of Hippocampal Place Fields at the Goal Location in an Annular Watermaze Task , 2001, The Journal of Neuroscience.

[35]  L. Schmued,et al.  Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration , 2000, Brain Research.

[36]  M. Witter,et al.  Perirhinal cortex input to the hippocampus in the rat: evidence for parallel pathways, both direct and indirect. A combined physiological and anatomical study , 1999, The European journal of neuroscience.

[37]  M. Witter,et al.  Entorhinal cortex of the rat: Cytoarchitectonic subdivisions and the origin and distribution of cortical efferents , 1998, Hippocampus.

[38]  L. Schmued,et al.  Characterizing cortical neuron injury with fluoro‐jade labeling after a neurotoxic regimen of methamphetamine , 1998, Synapse.

[39]  R. Schwarcz,et al.  Focal Microinjection of γ-Acetylenic GABA into the Rat Entorhinal Cortex: Behavioral and Electroencephalographic Abnormalities and Preferential Neuron Loss in Layer III , 1998, Experimental Neurology.

[40]  D. Amaral,et al.  Entorhinal cortex of the rat: Topographic organization of the cells of origin of the perforant path projection to the dentate gyrus , 1998, The Journal of comparative neurology.

[41]  R. Schwarcz,et al.  Neuronal damage after the injection of amino-oxyacetic acid into the rat entorhinal cortex: a silver impregnation study , 1997, Neuroscience.

[42]  William Slikker,et al.  Fluoro-Jade: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration , 1997, Brain Research.

[43]  R. Racine,et al.  Activation of astrocytes during epileptogenesis in the absence of neuronal degeneration , 1995, Neurobiology of Disease.

[44]  B. McNaughton,et al.  Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  P. Somogyi,et al.  The hippocampal CA3 network: An in vivo intracellular labeling study , 1994, The Journal of comparative neurology.

[46]  B L McNaughton,et al.  Dynamics of the hippocampal ensemble code for space. , 1993, Science.

[47]  R. J. Mullen,et al.  NeuN, a neuronal specific nuclear protein in vertebrates. , 1992, Development.

[48]  H. Groenewegen,et al.  The Phaseolus vulgaris-leucoagglutinin tracing technique for the study of neuronal connections. , 1991, Progress in histochemistry and cytochemistry.

[49]  R. Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  R U Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  D. Amaral,et al.  The three-dimensional organization of the hippocampal formation: A review of anatomical data , 1989, Neuroscience.

[52]  M. Witter,et al.  Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region , 1989, Progress in Neurobiology.

[53]  R. Muller,et al.  The firing of hippocampal place cells predicts the future position of freely moving rats , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  B. McNaughton,et al.  Preserved spatial coding in hippocampal CA1 pyramidal cells during reversible suppression of CA3c output: evidence for pattern completion in hippocampus , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  B. McNaughton,et al.  Hippocampal synaptic enhancement and information storage within a distributed memory system , 1987, Trends in Neurosciences.

[56]  J. B. Ranck,et al.  Spatial firing patterns of hippocampal complex-spike cells in a fixed environment , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  L. Swanson,et al.  Anatomical evidence for direct projections from the entorhinal area to the entire cortical mantle in the rat , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  K. Weber,et al.  Vimentin, the 57 000 molecular weight protein of fibroblast filaments, is the major cytoskeletal component in immature glia. , 1981, European journal of cell biology.

[59]  O. Steward,et al.  Topographic organization of the projections from the entorhinal area to the hippocampal formation of the rat , 1976, The Journal of comparative neurology.

[60]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[61]  D Marr,et al.  Simple memory: a theory for archicortex. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[62]  J. O’Keefe,et al.  Dual phase and rate coding in hippocampal place cells: Theoretical significance and relationship to entorhinal grid cells , 2005, Hippocampus.

[63]  B. McNaughton,et al.  Hippocampal granule cells are necessary for normal spatial learning but not for spatially-selective pyramidal cell discharge , 2004, Experimental Brain Research.

[64]  F. H. Lopes da Silva,et al.  Reciprocal connections between the entorhinal cortex and hippocampal fields CA1 and the subiculum are in register with the projections from CA1 to the subiculum , 2001, Hippocampus.

[65]  M. Hasselmo,et al.  Gaussian Processes for Regression , 1995, NIPS.

[66]  G Buzsáki,et al.  Possible physiological role of the perforant path‐CA1 projection , 1995, Hippocampus.

[67]  Edmund T. Rolls,et al.  What determines the capacity of autoassociative memories in the brain? Network , 1991 .

[68]  B. McNaughton,et al.  Comparison of spatial and temporal characteristics of neuronal activity in sequential stages of hippocampal processing. , 1990, Progress in brain research.

[69]  G. Paxinos The Rat nervous system , 1985 .

[70]  L. Frank,et al.  Behavioral/Systems/Cognitive Hippocampal Plasticity across Multiple Days of Exposure to Novel Environments , 2022 .