Intensity-based navigation with global guarantees

This article introduces simple, information-feedback plans that guide a robot through an unknown obstacle course using the sensed information from a single intensity source. The framework is similar to the well-known family of bug algorithms; however, our plans require less sensing information than any others. The robot is unable to access precise information regarding position coordinates, angular coordinates, time, or odometry, but is nevertheless able to navigate itself to a goal among unknown piecewise-analytic obstacles in the plane. The only sensor providing real values is an intensity sensor, which measures the signal strength emanating from the goal. The signal intensity function may or may not be symmetric; the main requirement is that the level sets are concentric images of simple closed curves. Convergence analysis and distance bounds are established for the presented plans. Furthermore, they are experimentally demonstrated using a differential drive robot and an infrared beacon.

[1]  Yanina Landa,et al.  Visibility of point clouds and exploratory path planning in unknown environments , 2008 .

[2]  Hiroaki Kitano,et al.  Applying scattering theory to robot audition system: robust sound source localization and extraction , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[3]  Magnus Egerstedt,et al.  A provably complete exploration strategy by constructing Voronoi diagrams , 2010, Auton. Robots.

[4]  Takamichi Nakamoto,et al.  Odor-source localization in the clean room by an autonomous mobile sensing system , 1996 .

[5]  Deborah Estrin,et al.  Robust range estimation using acoustic and multimodal sensing , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[6]  Subhash Suri,et al.  Simple Robots with Minimal Sensing: From Local Visibility to Global Geometry , 2007, Int. J. Robotics Res..

[7]  Ehud Rivlin,et al.  TangentBug: A Range-Sensor-Based Navigation Algorithm , 1998, Int. J. Robotics Res..

[8]  H. Hashemi,et al.  The indoor radio propagation channel , 1993, Proc. IEEE.

[9]  Nicholas Roy,et al.  Autonomous Flight in Unknown Indoor Environments , 2009 .

[10]  Ehud Rivlin,et al.  Sensory-based motion planning with global proofs , 1997, IEEE Trans. Robotics Autom..

[11]  Steven M. LaValle,et al.  A pursuit-evasion BUG algorithm , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[12]  R. Andrew Russell Chemical source location and the RoboMole project , 2003 .

[13]  J. M. Kleinberg,et al.  On-Line Algorithms for Robot Navigation and Server Problems , 1994 .

[14]  Howie Choset,et al.  Sensor-Based Exploration: Incremental Construction of the Hierarchical Generalized Voronoi Graph , 2000, Int. J. Robotics Res..

[15]  Howie Choset,et al.  Path Planning between Two Points for a Robot Experiencing Localization Error in Known and Unknown Environments , 1999 .

[16]  E. Polak Introduction to linear and nonlinear programming , 1973 .

[17]  Elon Rimon,et al.  CBUG: A Quadratically Competitive Mobile Robot Navigation Algorithm , 2005, IEEE Transactions on Robotics.

[18]  Xiaotie Deng,et al.  How to learn an unknown environment. I: the rectilinear case , 1998, JACM.

[19]  Hiroaki Kitano,et al.  Epipolar geometry based sound localization and extraction for humanoid audition , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[20]  Subhash Suri,et al.  Simple robots with minimal sensing: from local visibility to global geometry , 2007, AAAI 2007.

[21]  Volkan Isler,et al.  Efficient Strategies for Collecting Data from Wireless Sensor Network Nodes using Mobile Robots , 2009 .

[22]  Joel W. Burdick,et al.  An autonomous sensor-based path-planner for planetary microrovers , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[23]  Wolfram Burgard,et al.  A system for volumetric robotic mapping of abandoned mines , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[24]  Baruch Schieber,et al.  Navigating in unfamiliar geometric terrain , 1991, STOC '91.

[25]  Hiroshi Ishida,et al.  Mobile robot navigation using vision and olfaction to search for a gas/odor source , 2006, Auton. Robots.

[26]  Vladimir J. Lumelsky,et al.  Sensing, intelligence, motion - how robots and humans move in an unstructured world , 2005 .

[27]  Andrzej Pelc,et al.  Graph exploration by a finite automaton , 2005, Theor. Comput. Sci..

[28]  Michael A. Bender,et al.  The power of a pebble: exploring and mapping directed graphs , 1998, STOC '98.

[29]  Ehud Rivlin,et al.  Range-sensor based navigation in three dimensions , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[30]  Joel W. Burdick,et al.  RoverBug: Long Range Navigation for Mars Rovers , 1999, ISER.

[31]  Paul Newman,et al.  Using incomplete online metric maps for topological exploration with the Gap Navigation Tree , 2008, 2008 IEEE International Conference on Robotics and Automation.

[32]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[33]  Ricardo A. Baeza-Yates,et al.  Searching in the Plane , 1993, Inf. Comput..

[34]  Steven M. LaValle,et al.  I-Bug: An intensity-based bug algorithm , 2009, 2009 IEEE International Conference on Robotics and Automation.

[35]  Amitava Datta,et al.  Competitive Searching in Polygons - Beyond Generalised Streets , 1995, ISAAC.

[36]  Li-Tien Cheng,et al.  Visibility of Point Clouds and Mapping of Unknown Environments , 2006, ACIVS.

[37]  Srinivasan Seshan,et al.  Access Point Localization Using Local Signal Strength Gradient , 2009, PAM.

[38]  Manuel Blum,et al.  On the power of the compass (or, why mazes are easier to search than graphs) , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[39]  Frank W. Grasso,et al.  Biomimetic robot lobster performs chemo-orientation in turbulence using a pair of spatially separated sensors: Progress and challenges , 2000, Robotics Auton. Syst..

[40]  Steven M. LaValle,et al.  Mapping and Pursuit-Evasion Strategies For a Simple Wall-Following Robot , 2011, IEEE Transactions on Robotics.

[41]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[42]  Ronald C. Arkin,et al.  Noise maps for acoustically sensitive navigation , 2004, SPIE Optics East.

[43]  Hiroshi Ishida,et al.  Mobile robot navigation using vision and olfaction to search for a gas/odor source , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[44]  S. Ramo,et al.  Fields and Waves in Communication Electronics , 1966 .

[45]  Vladimir J. Lumelsky,et al.  Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape , 1987, Algorithmica.

[46]  Bruce Randall Donald The complexity of planar compliant motion planning under uncertainty , 1988, SCG '88.

[47]  Matthew T. Mason,et al.  An exploration of sensorless manipulation , 1986, IEEE J. Robotics Autom..

[48]  R. Andrew Russell,et al.  Robotic location of underground chemical sources , 2004, Robotica.

[49]  Vladimir J. Lumelsky,et al.  A paradigm for incorporating vision in the robot navigation function , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[50]  Eric Martinson,et al.  Robotic Discovery of the Auditory Scene , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[51]  Kenneth Y. Goldberg,et al.  Orienting polygonal parts without sensors , 1993, Algorithmica.

[52]  Steven M. LaValle,et al.  Learning the delaunay triangulation of landmarks from a distance ordering sensor , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[53]  Michael A. Bender,et al.  The power of a pebble: exploring and mapping directed graphs , 1998, STOC '98.

[54]  Xiaotie Deng,et al.  How to learn an unknown environment , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[55]  Sándor P. Fekete,et al.  Online Searching with an Autonomous Robot , 2004, WAFR.

[56]  Steven M. LaValle,et al.  Distance-Optimal Navigation in an Unknown Environment Without Sensing Distances , 2007, IEEE Transactions on Robotics.

[57]  Subhash Suri,et al.  Simple Robots in Polygonal Environments: A Hierarchy , 2008, ALGOSENSORS.

[58]  R. Andrew Russell,et al.  Robot Odor Localization: A Taxonomy and Survey , 2008, Int. J. Robotics Res..

[59]  Michael A. Erdmann,et al.  On Motion Planning with Uncertainty , 1984 .

[60]  Nicholas Roy,et al.  Planning in information space for a quadrotor helicopter in a GPS-denied environment , 2008, 2008 IEEE International Conference on Robotics and Automation.

[61]  Ryohei Kanzaki,et al.  Synthesis of the pheromone-oriented behavior of silkworm moths by a mobile robot with moth antennae as pheromone sensors , 1999 .

[62]  Joel W. Burdick,et al.  Practical autonomous path planner for turn-of-the-century planetary microrovers , 1999, Other Conferences.

[63]  Subhash Suri,et al.  Counting Targets with Mobile Sensors in an Unknown Environment , 2007, ALGOSENSORS.

[64]  Elon Rimon,et al.  Competitive Disconnection Detection in On-Line Mobile Robot Navigation , 2006, WAFR.