egoTEB: Egocentric, Perception Space Navigation Using Timed-Elastic-Bands

The TEB hierarchical planner for real-time navigation through unknown environments is highly effective at balancing collision avoidance with goal directed motion. Designed over several years and publications, it implements a multi-trajectory optimization based synthesis method for identifying topologically distinct trajectory candidates through navigable space. Unfortunately, the underlying factor graph approach to the optimization problem induces a mismatch between grid-based representations and the optimization graph, which leads to several time and optimization inefficiencies. This paper explores the impact of using egocentric, perception space representations for the local planning map. Doing so alleviates many of the identified issues related to TEB and leads to a new method called egoTEB. Timing experiments and Monte Carlo evaluations in benchmark worlds quantify the benefits of egoTEB for navigation through uncertain environments.

[1]  Torsten Bertram,et al.  Trajectory modification considering dynamic constraints of autonomous robots , 2012, ROBOTIK.

[2]  Lydia E. Kavraki,et al.  Analysis of probabilistic roadmaps for path planning , 1998, IEEE Trans. Robotics Autom..

[3]  Torsten Bertram,et al.  Integrated online trajectory planning and optimization in distinctive topologies , 2017, Robotics Auton. Syst..

[4]  Patricio A. Vela,et al.  Real-Time Egocentric Navigation Using 3D Sensing , 2019, Machine Vision and Navigation.

[5]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[6]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[7]  Byron Boots,et al.  Gaussian Process Motion planning , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[8]  Stefan Schaal,et al.  STOMP: Stochastic trajectory optimization for motion planning , 2011, 2011 IEEE International Conference on Robotics and Automation.

[9]  Oussama Khatib,et al.  Elastic bands: connecting path planning and control , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[10]  Bärbel Mertsching,et al.  Closest Gap based (CG) reactive obstacle avoidance Navigation for highly cluttered environments , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Javier Minguez,et al.  Nearness diagram navigation (ND): a new real time collision avoidance approach , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[12]  Torsten Bertram,et al.  Efficient trajectory optimization using a sparse model , 2013, 2013 European Conference on Mobile Robots.

[13]  Wolfram Burgard,et al.  G2o: A general framework for graph optimization , 2011, 2011 IEEE International Conference on Robotics and Automation.

[14]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[15]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[16]  Michael Beetz,et al.  Real-time perception-guided motion planning for a personal robot , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  SezerVolkan,et al.  A novel obstacle avoidance algorithm , 2012 .

[18]  Siddhartha S. Srinivasa,et al.  CHOMP: Gradient optimization techniques for efficient motion planning , 2009, 2009 IEEE International Conference on Robotics and Automation.

[19]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[20]  Patricio A. Vela,et al.  PiPS: Planning in perception space , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[21]  Bärbel Mertsching,et al.  Tangential Gap Flow (TGF) navigation: A new reactive obstacle avoidance approach for highly cluttered environments , 2016, Robotics Auton. Syst..

[22]  Larry H. Matthies,et al.  Stereo vision-based obstacle avoidance for micro air vehicles using disparity space , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[23]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..